
A Constraint Programming Approach for Solving

Multiple Traveling Salesman Problem

Masoumeh Vali1, Khodakaram Salimifard2

 1 Department of Industrial Management, Persian Gulf University, Bushehr 75168, Iran
m.vali@mehr.pgu.ac.ir

2 Department of Industrial Management, Persian Gulf University, Bushehr 75168, Iran

salimifard@pgu.ac.ir

Abstract. The multiple traveling salesman problem (mTSP) is a NP-hard combinatorial optimi-

zation problem. It has many real-world applications, for example, the School Bus Routing Prob-

lem, and the Pickup and Delivery Problem. In the mTSP, a set of routes is assigned to m salesmen

who all start from and return to a home city(depot). In this problem, each other node is located

in exactly one tour, the number of nodes visited by a salesman lies within a predetermined inter-

val, and the overall cost of visiting all nodes is minimized. In this study, we discuss how to use

constraint programming (CP) to formulate and solve mTSP by applying interval variables, global

constraints and domain filtering algorithms. We propose a CP model for the mTSP. The CP-

mTSP was tested on a set of benchmark instances from the TSPLIB. Solutions of the CP- mTSP

are compared to the ILP-CPLEX of mTSP model and other algorithms (ACO, SW+ASelite,

GELS-GA and Enhanced GA) in the literature. The computational results indicate that CP- mTSP

performs, on average, quite well compared to mentioned algorithms in terms of the number of

identified best-known solutions. CP is well known for its ability to find good quality feasible

solutions for complex structured problems within reasonable time.

Keywords: Multiple traveling salesman problem, Constraint programming, interval var-

iable

1 Introduction

One of the most famous Np-hard combinatorial optimization problems is the multiple

traveling salesman problem(mTSP). From one side, the mTSP can be considered as a

generalization of the Travelling Salesman Problem (TSP) [1], where a set of routes is

assigned to m salesmen who all start from and return to a home city. On the other, the

mTSP can be considered as a special case of the vehicle routing problem (VRP), in

which customers are considered unitary demands and every travelling salesman only

visits a predetermined number of cities. Thus, the mTSP can also be utilized for solving

several types of VRPs and all formulations and solution approaches for the VRP are

valid for the mTSP. Several methodologies have been raised to solve the mTSP, such

as heuristic and metaheuristic algorithms, neural network-based methods, ant systems

and exact techniques. exact algorithms are based on lagrangean relaxation algorithm

mailto:salimifard@pgu.ac.ir
mailto:salimifard@pgu.ac.ir

2

[2], branch-and-cut method [3], etc. Some of the well-known heuristic algorithms are

gravitational emulation search [4], local search [5], and lin-kernighan [6]. In recent

years, some well-known methods used to solve this problem are the evolutionary algo-

rithms including the genetic algorithm (GA) [7-9], simulated annealing (SA) [9], ant

colony optimization (ACO) [10, 11], artificial neural networks (ANN) [12, 13] and par-

ticle swarm optimization (PSO) [14].

The mTSP is very time consuming due to its NP-hard nature. The mTSP has a multi-

plicity of applications mostly in the areas of routing and scheduling such as the School

Bus Routing Problem [15, 16], and the Pickup and Delivery Problem [17, 18].

Many metaheuristic solution techniques have been developed for mTSP in recent years.

Zhou and Li [19] introduced a modified GA to solve the mTSP problem by a modified

GA. They utilized a greedy strategy to create the initial population, and the mutation

operator to combine with the local search strategy 2−Opt, which allows one to quickly

determine quality neighboring solutions and accelerates the convergence of the algo-

rithm. Sedighpour et al. [20] presented an effective GA for solving the mTSP, in which

the 2-Opt local search algorithm is used for improving solutions. Wacholder et. al. [12]

proposed an effective neural network algorithm to solve the mTSP based on transform-

ing the mTSP to the TSP. Y. Wang et al. [21] proposed a novel memetic algorithm for

solving mTSP, which integrates with a sequential variable neighborhood descent that

is a powerful local search procedure to exhaustively search the areas near the high-

quality solutions. They also investigated the total distance traveled by all the salesmen

when optimizing the minmax objective, and the results showed that in comparison with

the six existing algorithms, the proposed algorithm had a better or at least competitive

capacity to maintain the total distance as short as possible. C. Doppstadt et al. [22]

proposed a heuristic solution approach, based mainly on a Tabu Search, to solve the

Hybrid Electric Vehicle - Traveling Salesman Problem. The aim of this approach was

The reduction in carbon dioxide levels by using hybrid electric vehicles. J. Kinable et

al. [23] presented two integer programming models to solve the Equitable Traveling

Salesman Problem (ETSP) problem and compare the strength of these formulations.

They solved the first model through branch-and-cut, and the other model is solved

through a branch-and-price framework. They used branch-and bound and branch-and-

price for small and medium sized instances. However, for larger instances branch-and

bound outperforms branch-and-price.

 In this paper, a new exact solution technique for the mTSP is proposed. Also, mTSP

is formulated using a constraint programming (CP) model and refer to this model as

CP- mTSP. We use CP Optimizer for solving mTSP. CP has been shown to be an effi-

cient solution technique for numerous combinatorial optimization problems.

The contributions of this paper are threefold. First, a CP model is introduced for

mTSP and CP Optimizer is used for solving mTSP. Due to the strengths of CP in ex-

pressing complex relationships, very difficult constraints such as selective node visits,

subtour elimination, etc. are represented. Compared with ILP formulations for mTSP,

CP- mTSP does not require a large number of decision variables and constraints. Thus,

we are able to run benchmark instances without experiencing any memory problems.

When compared with metaheuristic approaches in the literature such as ACO, SW+

3

eliteAS , GELS-GA and Enhanced GA, our CP model does not require extensive pa-

rameter tuning as those methods do. And while the metaheuristic methods are quite

efficient in finding good quality solutions, they are not able to prove the optimality of

those solutions, as we are able for some instances using CP. Second, CP- mTSP and its

components, such as global constraints, provide a strong base for other solution tech-

niques for OP variants and related routing problems, potentially fostering new method-

ological developments. Third, the results we obtain using CP Optimizer with CP- mTSP

advance current knowledge regarding TSPLIB benchmark instances in a number of

ways.

The remainder of this paper is organized as follows. Section 2 provides the definition

of the multiple Travelling Salesman Problem (mTSP). Section 3 provides the CP for-

mulation for mTSP and provides an illustrative example. Section 4 provides results for

CPLEX- mTSP and CP- mTSP on a set of benchmark instances from the TSPPLIB.

Section 5 provides results for CP- mTSP and a comparison to existing algorithms from

the literature. Finally, conclusions and future research directions are discussed in Sec-

tion 6.

2 Problem Definition

A generalization of the well-known Travelling Salesman Problem is the standard mul-

tiple Travelling Salesman Problem (mTSP). The problem can be defined simply as the

determination of a set of routes for m salesmen who all start from and return to a single

home city.

 Consider a complete directed graph  AVG , , where V is the set of nodes

(vertices), A is the set of arcs and  
ijcC  is the cost (distance) matrix associated

with each arc   Aji , . The cost matrix C can be symmetric, asymmetric or Euclid-

ean. Let there be m salesmen located at the depot city 1. Then, the single depot mTSP

consists of finding tours for m salesmen such that all start and end at the depot, each

other node is located in exactly one tour, the number of nodes visited by a salesman lies

within a predetermined interval, and the overall cost of visiting all nodes is minimized.

 Let us define ijx as a binary variable equal to 1 if arc  ji, is in the optimal

solution and 0 otherwise. For any salesman, iu is the number of nodes visited on that

salesman 's path from the origin up to node i (i.e., the visit number of the
thi node).

L is the maximum number of nodes a salesman may visit; thus, Lui 1 ; for all

2i . In addition, let K be the minimum number of nodes a salesman must visit, i.e.,

if 1ijx , then iuK  must be satisfied. The position variables iu make it possible

to avoid the classical subtour elimination constraints.

 In [24] the following integer linear programming formulation for the mTSP pro-

posed as follows:

4

Minimize

 


Aji

ijij xc
,

mx
n

j

j 
2

1 (1)

mx
n

j

j 
2

1 (2)

njx
n

jii

ij ,...,2 1
,1




(3)

nix
n

jij

ij ,...,2 1
,1




 (4)

  niLxxLu iii ,..,2 12 11  (5)

  nixKxu iii ,..,2 22 11  (6)

nixx ii ,..,2 111  (7)

  nji2 12  LxLLxuu jiijji (8)

    Axij  ji, ,1,0

In this formulation, constraints (1) and (2) ensure that exactly m salesmen leave from

and return to the depot. Constraints (3) and (4) are the degree constraints. The inequal-

ities given in (5) and (6) serve as upper and lower bound constraints on the number of

nodes visited by each salesman, and initialize the value of to 1 if and only if is the first

node on the tour for any salesman. Inequality (7) forbids a vehicle from visiting only a

single node. The inequalities given in (8) ensure that 1 ij uu if and only if

.1ijx

3 Constraint Programming

Constraint programming is a powerful paradigm for solving combinatorial search prob-

lems that draws on a wide range of techniques from artificial intelligence, computer

science and operation research. A fundamental challenge in constraint programming is

to understand the computational complexity of problems involving constraints. There

are three differences between CP models and MILP models: firstly, CP models mostly

concentrate on the constraints and feasibility. Secondly, In CP models, constraints can

be logic constraints. And thirdly, CP models, for eliminating infeasible configurations

5

and decreasing the search space utilize heuristics, such as consistency techniques, con-

straint propagation, and branch and prune.

In general, CP models can be divided into two groups: first one is constraint satis-

faction problems, and second one is constraint optimization problems that used in pre-

sent research. An assignment of values from the variables domain which satisfies all

the constraints is a solution to a constraint satisfaction problem. Otherwise, search pro-

cedures are used to find the best solution for constraint optimization problems. The

readers are referred to [25-30] for reviewing of the solving techniques of the CP prob-

lems.

The multiple traveling salesman problem (mTSP) is a NP-hard combinatorial opti-

mization problem. To address these computational challenges, we aim to test the effec-

tiveness of CP, which is well known for its abilities to express complex relationships

using global constraints and to obtain good quality solutions within reasonable times.

A CP implementation contains a search strategy and a constraint propagation mecha-

nism designed to filter out the values in (integer) variable domains that cause infeasible

solutions[27, 31].

In the constraint model, algorithms are triggered every time a change occurs in the

domain of a variable. A feasible solution is obtained when all domains are reduced to a

single value. A variable can be used to model more than one constraint so whenever a

change occurs in the domain of a shared variable, propagation algorithms of all global

constraints are run to search for the possible domain reductions of other variables [29,

32, 33]. Search strategies may include both look back and look ahead procedures. As

the search proceeds, filtering algorithms are re-run with the updated information to

identify a feasible solution.

Milano and Wallace [34] presented Constraint Programming as a natural formalism for

modelling problems, and as a flexible platform for solving them. They combined linear pro-

gramming with propagation and novel and varied search techniques which can be easily

expressed in CP.

In the case of CP Optimizer, the optimality proofs are provided by the Failure-Di-

rected search[35] whereas good quality solutions are produced by the Large Neighbor-

hood Search [36], these 2 techniques are combined in the CP Optimizer automatic

search.

Failure-directed Search (FDS) assumes that there is no (better) solution or that such a

solution is very hard to find. Therefore, instead of looking for solution(s), it focuses on

a systematic exploration of the search space, first eliminating assignments that are most

likely to fail. Self-Adapting Large Neighborhood Search approach [36] combines Large

Neighborhood Search with a portfolio of neighborhoods and completion strategies to-

gether with Machine Learning techniques to converge on the most efficient neighbor-

hoods and completion strategies for the problem being solved. Large Neighborhood

Search (LNS) and FDS form the basis of the automatic search for scheduling problems

in CP Optimizer, part of IBM ILOG CPLEX Optimization Studio.

Pesant et.al [37] presented a constraint logic programming model for the traveling

salesman problem with time windows which yields an exact branch-and-bound optimi-

zation algorithm without any restrictive assumption on the time window. This algorithm

unlike dynamic programming approaches does not rely on the degree of discretization

applied to the data. The data-driven mechanism at its core more fully exploits pruning

6

rules developed in operations research by using them not only a priori but also dynam-

ically during the search.

 Caseau et. al. [38] presented a set of techniques which include a propagation

scheme to avoid intermediate cycles (a global constraint), a branching scheme and a

redundant constraint that can be used as bounding method. Also, they show that these

techniques can solve problems twice larger than those solved previously with

constraint programming tools.

Our CP model is denoted by using the Optimization Programming Language (OPL)

and formulated using the IBM ILOG CP optimizer. The remainder of this part indicates

how to make the CP model step-by-step.

3.1 Variables

In this section, we introduce a CP model for mTSP. In this CP model, two types of

variables are needed. One is an interval variable. We utilize (time) interval variables

that are capable of expressing several critical decisions such as start time, end time,

duration and usage rate under one variable [39, 40]. Interval variables are useful in

order to represent complex scheduling and routing activities especially when they are

optional (i.e. a task may or may not be processed, a customer may or may not be visited,

etc.). An important additional feature of interval variables is the fact that they can be

optional, that is, one can decide not to consider them in the solution schedule Laborie

and Rogerie [45] mention several advantages of interval variables. One is that the op-

tionality is already modeled in the definition of the interval variable and there is no

need for additional constraints in order to enforce this binary relationship, as the tradi-

tional integer decision variables require in scheduling problem formulations. Also func-

tion presenceOf (a) is a boolean function which indicates (a) is absent or present [41].

In this study, a city can be selected by a set of salesmen, therefore optional interval

variables are used to model this case. We define ijx as an interval variable which rep-

resents the salesman j to visit city i . The other type of variable needed to complete

the model is the interval sequence variable. In our model, a sequence variable represents

an assortment on the set of cities visited by a salesman. Since we have several salesmen,

so we have several sequences. The size of the sequence depends on the number of cities

visited by any salesman. We define jl as an interval sequence variable which repre-

sents the
thj salesman.

OPL gives us specific facilities to express decision variables in a more compact way.

Dependent variables are implemented as OPL variable expressions (dexpr) defined

through equality constraints. We use two dependent variables in our model, described

just below:

  mjxpresenceOfNR
n

i

ijj ,...,1 ,
2




iNR represents the total number of cities visited by a salesman.

7

3.2 Constraints

 By considering the function of presenceOf(a), we define following constraint to

ensure that a city is visited only by one salesman:

  nixpresenceOf
m

j

ij ,...,2 ,1
1




The distance between two cities is calculated as:

tuple triplet { int p1; int p2; int d; };

 {triplet} dist = {<p1,p2,ftoi(round(sqrt(((coord[1][p1])-
(coord[1][p2]))^2+(coord[2][p1]-coord[2][p2])^2)))> | p1,p2 in
city };

CP has some predefined constraints which show the flexibility of the CP model. One

of them is noOverlap which is used to guarantee that there is no overlap between any

two cities. We use this on the interval sequence variables as:

  mjdistlnoOverlap j ,...,2,1 ,, 

This constraint states that the sequence defines a chain of non-overlapping intervals

(distances), where any intervals in the chain are constrained to end before the start of

the next interval in the chain.

We use UNRK i  to enforce the upper and lower bounds for the number of cities

visited by one salesman. To ensure that all salesmen start from depot 0 and turn back

to the depot 1(, add two constraints as:

 
  mjxllast

mjxlfirst

jj

jj

,...,2,1 ,,

,...,2,1 ,,

1

0





3.3. Objective

 The objective function, minimizing total cost (distance) of visiting all cities, formu-

lated as below:

    
 


m

j i

ij

m

j

j xendOfxendOfMinimize
1 21

1 max

Where  
jxendOf 1 represents the distance travelled by each salesman to the depot

city 1. In other words, endOf is an integer expression used to access the end time of an

interval. The objective function minimizes the sum of the end time of the routes. The

CP code of the proposed method shown in figure 1 is as follows:

8

4 Computational Results

This section presents the computational study and its results. At first, the heuristic al-

gorithms compared mTSP are described. Next, solving the standard issues of the mTSP

from the TSPLIB library by two methods (MILP and CP) has been introduced in the

subsections 4.2 and 4.3, respectively.

using CP;
int cities=76;
range city=0..cities;
int salesmen=5;
range sale=1..salesmen;
int U=20;
int K=1;
float coord[i in 1..2][j in city]=...;

tuple triplet { int p1; int p2; int d; };
 {triplet} dist = {<p1,p2,ftoi(round(sqrt(((coord[1][p1])-
(coord[1][p2]))^2+(coord[2][p1]-coord[2][p2])^2)))> | p1,p2 in
city } ;

dvar interval task[t in city][l in sale] optional(t>1);
dvar sequence lane[l in sale] in all (t in city) task [t][l];
dexpr int num[l in sale]=sum(t in city:t>1)(presen-
ceOf(task[t][l]));
dexpr float y= sum(l in sale) endOf(task[1][l]);
minimize y;
subject to{
c1:
forall (t in city: t>1)
 sum(l in sale)presenceOf(task [t][l])==1;
c2:
forall (l in sale){
 noOverlap(lane[l], dist);
 first(lane[l],task[0][l]);
 last (lane[l],task[1][l]); }
c3:
forall (l in sale)
 {
 num[l]<=U;
 num[l]>=K;

 }

Figure1. CP Code of the mTSP

9

4.1 Test Algorithms for Comparison

 In this subsection, we introduced the heuristic algorithms compared with mTSP as

follows.

 M. Yousefikhoshbakht et al. [42] proposed a hybrid two-phase algorithm called

SW+ eliteAS , for solving the MTSP which can be explained as the problem of designing

collection of routes from one depot to a number of customers subject to side constraints.

At the first stage, the MTSP is solved by the sweep algorithm, and at the second stage,

the Elite Ant Colony Optimization (eliteAS) and 3-opt local search are used for im-

proving solutions.

 LTang et al. [13] presented the model, solution method, and system developed

and implemented for hot rolling production scheduling. This project is part of a large-

scale effort to upgrade production and operations management systems of major iron

and steel companies in China. They propose a parallel strategy to model the scheduling

problem and solve it using a new modified genetic algorithm (MGA).

 P. Junjie and W. Dingwei[10] presented ant colony optimization(ACO) to solve mul-

tiple travelling salesman problem (MTSP). They showed that how the ant colony opti-

mization (ACO) can be applied to the MTSP with ability constraint.

A. R. Hosseinabadi et al.[43] presented a new hybrid algorithm, called GELS-GA for

solving the mTSP. The objective of presenting the proposed algorithm was to combine

the public search capabilities of GA with local search of GELS algorithm and to create

a stable algorithm, which can make reaching the global optimum largely possible.

 F. Zhao et al. [19] introduced an improved genetic algorithm for the multiple traveling

salesman problem. In this algorithm, a pheromone-based crossover operator is de-

signed, and a local search procedure is used to act as the mutation operator the phero-

mone-based crossover can utilize both the heuristic information including edge lengths

and adjacency relations, and pheromone to construct offspring.

4.2 MILP Results

 The proposed model in section 2 was solved by using IBM-ILOG-CPLEX-

Optimization Studio software on a HP laptop with the processor Intel ® Core i7-

2630QM CPU @ 2GHz. Standard issues of the mTSP are also included in the imple-

mentation of the proposed model, which are derived from the TSPLIB library. If the

variable 1ijx , it means the
thj city is placed immediately after the

thi city by the

same salesman. The instance of the TSPLIB called burma14 is solved in the following.

The variables ijx that are equal to 1 and the corresponding salesman in the mTSP -14

example with 14 cities , 2 salesmen and 91  iu are as follows:

 

 181376512431412

121091111





Salesman

Salesman

The value of the objective function (optimal solution) is obtained 32 within 1 second.

Also, this model is applied and tested on several instances from TSP problems of

TSPLIB including Pr76, Pr152, Pr226, Pr299, Pr439, Pr1002, mTSP-51, mTSP-100-II

10

and mTSP-150-II. For each instance, the number of customers, n, the number of sales-

man, m, and the max number of customers that a salesman can visit, L, is presented.

The numerical results of the proposed method on these instances are presented in Tables

1.

Table 1. The Result of the proposed method in order to minimize the total travelled distance

problem MILP Result

Name n m L

MILP

objective Iterations Times

Pr76 76 5 20 170700 1879075 00:10:01:22

Pr152 152 5 40 201770 356626 00:10:10:05

Pr226 226 5 50 1736500 84580 00:10:03:11

Pr229 299 5 70 671510 56925 00:10:04:40

Pr439 439 5 100 1999900 29446 00:10:11:03

Pr1002 1002 5 220 -- -- --

mTSP-51

51 3 51 454-opt 1131 00:00:06:40

51 5 51 496-opt 34754 00:00:10:10

51 10 51 643-opt 22990 00:00:04:32

mTSP-100-II

100 3 100 28419 1573953 00:20:05:12

100 5 100 25135 6580111 00:20:15:08

100 10 100 29048 5738885 00:20:03:21

100 20 100 43537 3501321 00:20:10:00

mTSP-150-II

150 3 150 27964 538442 00:20:01:08

150 5 150 29244 654921 00:20:00:49

150 10 150 36795 547833 00:20:01:55

150 20 150 53621-opt 412523 00:20:03:16

150 30 150 77875-opt 357803 00:20:08:07

4.3 Constraint Programming Results

The mTSP-51 example of TSPLIB with 51 cities and 3 salesmen was solved by using

IBM-ILOG-CP-Optimization Studio software on an aforesaid laptop and the best solu-

tion after 120 seconds is obtained 456. The cities travelled with each salesman are

presented in the Table 2.

11

Table 2. The Result of the MTSP-51 in order to minimize the total travelled distance

Salesman 1 Salesman 2

Visited cities Arrival time Leave time Visited cities Arrival time Leave time

0 0 0 0 0 0

2 12 12 27 8 8

16 21 21 51 16 16

50 27 27 46 18 18

9 33 33 12 25 25

30 41 41 47 31 31

34 48 48 17 40 40

21 57 57 37 45 45

29 64 64 44 52 52

20 74 74 15 58 58

35 81 81 45 65 65

36 87 87 33 72 72

3 99 99 39 86 86

28 108 108 10 96 96

31 115 115 49 104 104

8 124 124 5 112 112

26 131 131 38 119 119

7 142 142 11 126 126

23 148 148 32 132 132

43 161 161 1 138 138

24 173 173

14 184 184 Salesman 3

25 190 190 Visited cities Arrival time Leave time

13 203 203 0 0 0

41 212 212 22 7 7

40 224 224 1 14 14

19 235 235

42 244 244

4 260 260

18 268 268

6 283 283

48 292 292

1 304 304

The computational results of the proposed method on several instances from TSP

problems of TSPLIB are presented in Tables 3 and 4.

Table 3. The Result of the proposed method in order to minimize the total travelled distance

Problem CP Result

Name n m L CP objective Time(s)

Pr76 76 5 20 156388 00:02:00:52

Pr152 152 5 40 155595 00:02:00:50

Pr226 226 5 50 165804 00:02:00:58

Pr299 299 5 70 82834 00:02:00:71

Pr439 439 5 100 198990 00:02:01:05

Pr1002 1002 5 220 241468 00:02:03:71

12

 Table 4. The Result of the proposed method in order to minimize the total travelled distance

Problem mTSP-51 mTSP-100-I

m 3 5 10 3 5 10 20

CP

 Objective
456 485 608 23509 24714 32440 44611

Time(s)
00:02:0

0:11

00:02:0

0:41

00:02:0

0:52

00:02:0

0:42

00:02:0

0:46

00:02:0

0:44

00:02:0

0:53

Problem mTSP-100-II mTSP-150-I

m 3 5 10 20 3 5 10

CP Objec-

tive
23023 23910 31556 40652 29687 31045 37605

Time(s)
00:02:0

0:42

00:02:0

0:33

00:02:0

0:04

00:02:0

0:51

00:02:0

0:46

00:02:0

0:49

00:02:0

0:52

Problem mTSP-150-I mTSP-150-II

m 20 30 3 5 10 20 30

CP Objec-

tive
49917 63795 27327 29050 39675 56306 80018

Time(s)
00:02:0

0:66

00:02:0

0:83

00:02:0

0:47

00:02:0

0:44

00:02:0

0:49

00:02:0

0:63

00:02:0

0:82

5 Comparison of Computational Results

 The implementation results of the proposed model are compared to the other existing

optimization algorithm in the literature and articles [10, 13, 19, 42, 43].

 A very important advantage of CP-mTSP compared to ILP model in Vansteenwegen

et al. [44] and Labadie et al. [45] is that the number of constraints is no longer expo-

nentially growing with the size of the input such as number of customers, vehicles and

tour duration.

Table 5. Comparison of the MILP model and CP model with the result of papers [10, 13, 42, 43]

Problem

Name Pr76 Pr152 Pr226 Pr299 Pr439 Pr1002

n 76 152 226 299 439 1002

m 5 5 5 5 5 5

L 20 40 50 70 100 220

ACO[10]
Avg. 180690 136341 170877 83845 165035 387205

Time(s) 51 128 143 288 563 2620

SW+ eliteAS
[42]

Avg. 157562 128004 168156 82195 162657 381654

Time(s) 19 41 62 65 95 186

GELS-GA[43]
Avg. 132784 105205 152135 76554 146523 354341

Time(s) 5 8 9 11 16 27

MGA

[13]

Avg. 160574 133337 178501 85796 183698 459179

Time(s) 43 91 165 363 623 2892

MILP Result
Obj. func. 170700 201770 1736500 671510 1999900 --

Time(s) 601 610 603 604 611 --

CP

 Result

Obj. func. 156388 155595 165804 82834 198990 241468

Time(s) 120 120 120 120 120 120

13

 According to Table 5, the MILP model lost its computational efficiency in large

scale problem. In problems with 76 and 152 cities, MILP could not find optimal solu-

tion, as well as, in problems with 226, 299, 439 and 1002 cities, MILP could not find

feasible solution in 600 seconds. The computational efficiency of the CP model is better

than MILP model for Pr76, Pr152, Pr226, Pr299, Pr439, Pr1002. Also, the CP model is

better than ACO and SW+ eliteAS
algorithms for Pr76, Pr152 and Pr226. In addition,

the CP model is better than ACO for Pr299.

Table 6. Comparison of the MILP model and CP model with the result of papers[19, 43]

Prob-

lem

Name mTSP-51 mTSP-100-II

m 3 5 10 3 5 10 20

En-

hance

d GA

[19]

Best 447.42 446.11 583.57
22366.5

7

23895.3

8

27675.4

2

39993.8

3

Avg. 448.5 478.41 587.39
22466.4

1
24040.5

7
28033.5

3
40274.5

8

Worst 449.62 482.41 589.86
22611.2

4

24095.9

6

28216.6

4

40582.5

5

Time

(s)
7.10 8.78 11.20 17.27 20.18 26.52 34.89

GELS

-GA

[43]

Best 252 259 324 17800 20532 24354 35142

Avg. 254.5 263.5 328 18035 20589 24803.5 35969

Worst 257 268 332 18270 20646 25253 36796

Time(s

)
5 4 9 12 14 17 23

MILP

Result

Obj.

func.
454-opt 496 643-opt 28419 25135 29048 43537

Time

(s)
6 10 4 1205 1215 1203 1210

CP

Result

Obj.

func.
456 485 608 23023 23910 31556 40652

Time

(s)
120 120 120 120 120 120 120

 Name mTSP-150-II

Prob-

lem
m 3 5 10 20 30

En-

hance

d GA

[19]

Best
39179.4

1

40437.1

8

40437.1

8

55959.7

0

71605.2

5

Avg.
39361.0

4

40663.3

1

40663.3

1

56417.8

6

71808.9

9

Worst
39557.4

3

40803.1

5

40803.1

5

56572.8

7

71923.9

8

Time

(s)
28.04 34.02 34.02 57.13 67.47

GELS

-GA

[43]

Best 37600 38132 38132 51393 66474

Avg. 37933.5 38336.5 38336.5 51443 66824.5

Worst 38267 38541 38541 51493 67175

Time

(s)
25 28 28 36 44

MILP

Obj.

func.
27964 29244 36795

53621-

opt

77875-

opt

Time 1201 1200 1201 1203 1208

14

According to Table 6, the MILP is better than CP model only for mTSP-51 with 3

salesmen and lost its computational efficiency in large scale with 100 and 150 cities.

The CP model is better than Enhanced GA and GELS-GA algorithms for mTSP-150-

II with 3, 5 and 10 salesmen.

6 Conclusion

In this paper, we study the mTSP, formulate it as a constraint programming model and

report solutions for benchmark instances of the TSPLIB. Constraint programming is a

powerful paradigm for solving combinatorial search problems so we use the CP model

for solving multiple Travelling Salesman Problem (mTSP). The mTSP is very time

consuming due to its NP-hard nature. The new model, CP- mTSP, has been shown to

be quite competitive with the heuristic algorithms and can be a reference method for

solving variants of OP. The computational results indicate that CP- mTSP performs, on

average, quite well compared to heuristic algorithms and outperforms most of the ex-

isting approaches in the literature in terms of the number of identified best-known so-

lutions. TSP problems of TSPLIB including Pr76, Pr152, Pr226, Pr299, Pr439, Pr1002,

mTSP-51, mTSP-100-II and mTSP-150-II show that the efficiency of the CP model for

solving problem in large scale problem. Also, these results show that the CP model is

more efficient than other algorithms such as ACO, SW+ eliteAS , GELS-GA and En-

hanced GA in some instances of TSPLIB. Future work for consideration is related to

the development of an efficient and effective decomposition algorithm.

ILP provides a global perspective through reporting upper and lower bounds that

guide the search effectively. Also, CP is well known for its ability to find good quality

feasible solutions for complex structured problems within reasonable time. Therefore,

a hybrid decomposition algorithm that exploits these benefits of ILP and CP may obtain

new best-known solutions and/or prove the optimality of the current ones for the bench-

mark problem instances.

References

1. Carter, A.E. and C.T. Ragsdale, A new approach to solving the multiple traveling salesper-

son problem using genetic algorithms. European journal of operational research, 2006.

175(1): p. 246-257.
2. Yadlapalli, S., et al., A Lagrangian-based algorithm for a multiple depot, multiple traveling

salesmen problem. Nonlinear Analysis: Real World Applications, 2009. 10(4): p. 1990-

1999.

Result (s)

CP

Result

Obj.

func.
27327 29050 29050 56306 80018

Time

(s)
120 120 120 120 120

15

3. Cordeau, J.-F., M. Dell’Amico, and M. Iori, Branch-and-cut for the pickup and delivery

traveling salesman problem with FIFO loading. Computers & Operations Research, 2010.

37(5): p. 970-980.
4. Balachandar, S.R. and K. Kannan, Randomized gravitational emulation search algorithm

for symmetric traveling salesman problem. Applied Mathematics and Computation, 2007.

192(2): p. 41 3-421.
5. Bianchi, L., J. Knowles, and N. Bowler, Local search for the probabilistic traveling sales-

man problem: Correction to the 2-p-opt and 1-shift algorithms. European Journal of Oper-

ational Research, 2005. 162(1): p. 206-219.
6. Karapetyan, D. and G. Gutin, Lin–Kernighan heuristic adaptations for the generalized trav-

eling salesman problem. European Journal of Operational Research, 2011. 208(3): p. 221-

232.
7. Király, A. and J. Abonyi, Optimization of multiple traveling salesmen problem by a novel

representation based genetic algorithm, in Intelligent Computational Optimization in Engi-

neering. 2011, Springer. p. 241-269.
8. Yuan, S., et al., A new crossover approach for solving the multiple travelling salesmen prob-

lem using genetic algorithms. European Journal of Operational Research, 2013. 228(1): p.

72-82.
9. Rostami, A.S., et al., Solving multiple traveling salesman problem using the gravitational

emulation local search algorithm. Appl. Math, 2015. 9(2): p. 699-709.
10. Junjie, P. and W. Dingwei. An ant colony optimization algorithm for multiple travelling

salesman problem. in Innovative Computing, Information and Control, 2006. ICICIC'06.

First International Conference on. 2006. IEEE.
11. Liu, W., et al. An ant colony optimization algorithm for the multiple traveling salesmen

problem. in Industrial Electronics and Applications, 2009. ICIEA 2009. 4th IEEE Confer-

ence on. 2009. IEEE.
12. Wacholder, E., J. Han, and R. Mann, An extension of the Hopfield-Tank model for solution

of the multiple Traveling Salesmen Problem. 1988: Engineering Physics and Mathematics

Division, Oak Ridge National Laboratory.
13. Tang, L., et al., A multiple traveling salesman problem model for hot rolling scheduling in

Shanghai Baoshan Iron & Steel Complex. European Journal of Operational Research, 2000.

124(2): p. 267-282.
14. Trelea, I.C., The particle swarm optimization algorithm: convergence analysis and param-

eter selection. Information processing letters, 2003. 85(6): p. 317-325.
15. Angel, R., et al., Computer-assisted school bus scheduling. Management Science, 1972.

18(6): p. B-279-B-288.
16. Orloff, C., Routing a fleet of M vehicles to/from a central facility. Networks, 1974. 4(2): p.

147-162.
17. Christofides, N. and S. Eilon, An algorithm for the vehicle-dispatching problem. Journal of

the Operational Research Society, 1969. 20(3): p. 309-318.
18. Wilhelm, W.E., A technical review of column generation in integer programming. Optimi-

zation and Engineering, 2001. 2(2): p. 159-200.
19. Zhao, F., et al. An improved genetic algorithm for the multiple traveling salesman problem.

in Control and Decision Conference, 2008. CCDC 2008. Chinese. 2008. IEEE.
20. Sedighpour, M., M. Yousefikhoshbakht, and N. Mahmoodi Darani, An effective genetic al-

gorithm for solving the multiple traveling salesman problem. Journal of Optimization in

Industrial Engineering, 2012(8): p. 73-79.

16

21. Wang, Y., Y. Chen, and Y. Lin, Memetic algorithm based on sequential variable neighbor-

hood descent for the minmax multiple traveling salesman problem. Computers & Industrial

Engineering, 2017. 106: p. 105-122.
22. Doppstadt, C., A. Koberstein, and D. Vigo, The Hybrid Electric Vehicle–Traveling Sales-

man Problem. European Journal of Operational Research, 2016. 253(3): p. 825-842.
23. Kinable, J., et al., Exact algorithms for the equitable traveling salesman problem. European

Journal of Operational Research, 2017.
24. Kara, I. and T. Bektas, Integer linear programming formulations of multiple salesman prob-

lems and its variations. European Journal of Operational Research, 2006. 174(3): p. 1449-

1458.
25. Kumar, V., Algorithms for constraint-satisfaction problems: A survey. AI magazine, 1992.

13(1): p. 32.
26. Barták, R., On-line guide to constraint programming. 1998.
27. Hooker, J.N., Integrated methods for optimization. Vol. 100. 2007: Springer Science &

Business Media.
28. Heipcke, S., Comparing constraint programming and mathematical programming ap-

proaches to discrete optimisation—the change problem. Journal of the Operational Research

Society, 1999. 50(6): p. 581-595.
29. van Hoeve, W. and I. Katriel, Handbook of Constraint Programming, ser. Foundations of

Artificial Intelligence. 2006, Elsevier Science.
30. Wallace, M. Principles and Practice of Constraint Programming-CP 2004. in 10th Interna-

tional Conference, CP. 2004. Springer.
31. Rossi, F., P. Van Beek, and T. Walsh, Handbook of constraint programming. 2006: Elsevier.
32. Lombardi, M. and M. Milano, Optimal methods for resource allocation and scheduling: a

cross-disciplinary survey. Constraints, 2012. 17(1 :) p. 51-85.
33. Harjunkoski, I. and I.E. Grossmann, Decomposition techniques for multistage scheduling

problems using mixed-integer and constraint programming methods. Computers & Chemi-

cal Engineering, 2002. 26(11): p. 1533-1552.
34. Milano, M. and M .Wallace, Integrating operations research in constraint programming.

Annals of Operations Research, 2010. 175(1): p. 37-76.
35. Vilím, P., P. Laborie, and P. Shaw. Failure-directed search for constraint-based scheduling.

in International Conference on AI and OR Techniques in Constriant Programming for Com-

binatorial Optimization Problems. 2015. Springer.
36. Laborie, P. and D. Godard, Self-adapting large neighborhood search: Application to single-

mode scheduling problems. Proceedings MISTA-07, Paris, 2007 :p. 276-284.
37. Pesant, G., et al., An exact constraint logic programming algorithm for the traveling sales-

man problem with time windows. Transportation Science, 1998. 32(1): p. 12-29.
38. Caseau, Y. and F. Laburthe. Solving Small TSPs with Constraints. in ICLP. 1997.
39. Studio, I.I.C.O., V12. 3, Inc.,“Using the CPLEXR Callable Library and CPLEX Barrier and

Mixed Integer Solver Options,” 2011.
40. Laborie, P. and J. Rogerie. Reasoning with Conditional Time-Intervals. in FLAIRS confer-

ence. 2008.
41. ILOG, I., IBM ILOG CPLEX Optimization Studio, V12. 5. 2013.
42. Yousefikhoshbakht, M. and M. Sedighpour, A combination of sweep algorithm and elite ant

colony optimization for solving the multiple traveling salesman problem. Proceedings of the

Romanian academy A, 2012. 13(4): p. 295-302.
43. Hosseinabadi, A.A., et al. Gels-ga: hybrid metaheuristic algorithm for solving multiple trav-

elling salesman problem. in Intelligent Systems Design and Applications (ISDA), 2014 14th

International Conference on. 2014. IEEE.

17

44. Vansteenwegen, P., et al., Iterated local search for the team orienteering problem with time

windows. Computers & Operations Research, 2009. 36(12): p. 3281-3290.
45. Labadie, N., et al., The team orienteering problem with time windows: An lp-based granular

variable neighborhood search. European Journal of Operational Research, 2012. 220(1): p.

15-27.

