
A Constraint Programming Approach for Solving 

Multiple Traveling Salesman Problem 

 

Masoumeh Vali1, Khodakaram Salimifard2 

 

 1 Department of Industrial Management, Persian Gulf University, Bushehr 75168, Iran 
m.vali@mehr.pgu.ac.ir 

2 Department of Industrial Management, Persian Gulf University, Bushehr 75168, Iran 

salimifard@pgu.ac.ir 

 

 

 

Abstract. The multiple traveling salesman problem (mTSP) is a NP-hard combinatorial optimi-

zation problem. It has many real-world applications, for example, the School Bus Routing Prob-

lem, and the Pickup and Delivery Problem. In the mTSP, a set of routes is assigned to m salesmen 

who all start from and return to a home city(depot). In this problem, each other node is located 

in exactly one tour, the number of nodes visited by a salesman lies within a predetermined inter-

val, and the overall cost of visiting all nodes is minimized. In this study, we discuss how to use 

constraint programming (CP) to formulate and solve mTSP by applying interval variables, global 

constraints and domain filtering algorithms. We propose a CP model for the mTSP. The CP- 

mTSP was tested on a set of benchmark instances from the TSPLIB.  Solutions of the CP- mTSP 

are compared to the ILP-CPLEX of mTSP model and other algorithms (ACO, SW+ASelite, 

GELS-GA and Enhanced GA) in the literature. The computational results indicate that CP- mTSP 

performs, on average, quite well compared to mentioned algorithms in terms of the number of 

identified best-known solutions. CP is well known for its ability to find good quality feasible 

solutions for complex structured problems within reasonable time. 

Keywords: Multiple traveling salesman problem, Constraint programming, interval var-

iable 

1 Introduction 

One of the most famous Np-hard combinatorial optimization problems is the multiple 

traveling salesman problem(mTSP). From one side, the mTSP can be considered as a 

generalization of the Travelling Salesman Problem (TSP) [1], where a set of routes is 

assigned to m salesmen who all start from and return to a home city. On the other, the 

mTSP can be considered as a special case of the vehicle routing problem (VRP), in 

which customers are considered unitary demands and every travelling salesman only 

visits a predetermined number of cities. Thus, the mTSP can also be utilized for solving 

several types of VRPs and all formulations and solution approaches for the VRP are 

valid for the mTSP. Several methodologies have been raised to solve the mTSP, such 

as heuristic and metaheuristic algorithms, neural network-based methods, ant systems 

and exact techniques. exact algorithms are based on lagrangean relaxation algorithm 
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[2], branch-and-cut method [3], etc. Some of the well-known heuristic algorithms are 

gravitational emulation search [4], local search [5], and lin-kernighan [6]. In recent 

years, some well-known methods used to solve this problem are the evolutionary algo-

rithms including the genetic algorithm (GA) [7-9], simulated annealing (SA) [9], ant 

colony optimization (ACO) [10, 11], artificial neural networks (ANN) [12, 13] and par-

ticle swarm optimization (PSO) [14]. 

The mTSP is very time consuming due to its NP-hard nature. The mTSP has a multi-

plicity of applications mostly in the areas of routing and scheduling such as the School 

Bus Routing Problem [15, 16], and the Pickup and Delivery Problem [17, 18].  

Many metaheuristic solution techniques have been developed for mTSP in recent years. 

Zhou and Li [19] introduced a modified GA to solve the mTSP problem by a modified 

GA. They utilized a greedy strategy to create the initial population, and the mutation 

operator to combine with the local search strategy 2−Opt, which allows one to quickly 

determine quality neighboring solutions and accelerates the convergence of the algo-

rithm. Sedighpour et al. [20] presented an effective GA for solving the mTSP, in which 

the 2-Opt local search algorithm is used for improving solutions. Wacholder et. al. [12] 

proposed an effective neural network algorithm  to solve the mTSP based on transform-

ing the mTSP to the TSP. Y. Wang et al. [21] proposed a novel memetic algorithm for 

solving mTSP, which integrates with a sequential variable neighborhood descent that 

is a powerful local search procedure to exhaustively search the areas near the high-

quality solutions. They also investigated the total distance traveled by all the salesmen 

when optimizing the minmax objective, and the results showed that in comparison with 

the six existing algorithms, the proposed algorithm had a better or at least competitive 

capacity to maintain the total distance as short as possible. C. Doppstadt et al. [22] 

proposed a heuristic solution approach, based mainly on a Tabu Search, to solve the 

Hybrid Electric Vehicle - Traveling Salesman Problem. The aim of this approach was 

The reduction in carbon dioxide levels by using hybrid electric vehicles.  J. Kinable et 

al. [23] presented two integer programming models to solve the Equitable Traveling 

Salesman Problem (ETSP) problem and compare the strength of these formulations. 

They solved the first model through branch-and-cut, and the other model is solved 

through a branch-and-price framework. They used branch-and bound and branch-and-

price for small and medium sized instances. However, for larger instances branch-and 

bound outperforms branch-and-price. 

    In this paper, a new exact solution technique for the mTSP is proposed. Also, mTSP 

is formulated using a constraint programming (CP) model and refer to this model as 

CP- mTSP. We use CP Optimizer for solving mTSP. CP has been shown to be an effi-

cient solution technique for numerous combinatorial optimization problems. 

The contributions of this paper are threefold. First, a CP model is introduced for 

mTSP and CP Optimizer is used for solving mTSP. Due to the strengths of CP in ex-

pressing complex relationships, very difficult constraints such as selective node visits, 

subtour elimination, etc. are represented. Compared with ILP formulations for mTSP, 

CP- mTSP does not require a large number of decision variables and constraints. Thus, 

we are able to run benchmark instances without experiencing any memory problems. 

When compared with metaheuristic approaches in the literature such as ACO, SW+
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eliteAS , GELS-GA and Enhanced GA, our CP model does not require extensive pa-

rameter tuning as those methods do. And while the metaheuristic methods are quite 

efficient in finding good quality solutions, they are not able to prove the optimality of 

those solutions, as we are able for some instances using CP. Second, CP- mTSP and its 

components, such as global constraints, provide a strong base for other solution tech-

niques for OP variants and related routing problems, potentially fostering new method-

ological developments. Third, the results we obtain using CP Optimizer with CP- mTSP 

advance current knowledge regarding TSPLIB benchmark instances in a number of 

ways. 

The remainder of this paper is organized as follows. Section 2 provides the definition 

of the multiple Travelling Salesman Problem (mTSP). Section 3 provides the CP for-

mulation for mTSP and provides an illustrative example. Section 4 provides results for 

CPLEX- mTSP and CP- mTSP on a set of benchmark instances from the TSPPLIB. 

Section 5 provides results for CP- mTSP and a comparison to existing algorithms from 

the literature. Finally, conclusions and future research directions are discussed in Sec-

tion 6. 

2 Problem Definition 

A generalization of the well-known Travelling Salesman Problem is the standard mul-

tiple Travelling Salesman Problem (mTSP). The problem can be defined simply as the 

determination of a set of routes for m salesmen who all start from and return to a single 

home city.  

   Consider a complete directed graph  AVG , , where V  is the set of nodes 

(vertices), A is the set of arcs and  
ijcC   is the cost (distance) matrix associated 

with each arc   Aji , . The cost matrix C can be symmetric, asymmetric or Euclid-

ean. Let there be m salesmen located at the depot city 1. Then, the single depot mTSP 

consists of finding tours for m salesmen such that all start and end at the depot, each 

other node is located in exactly one tour, the number of nodes visited by a salesman lies 

within a predetermined interval, and the overall cost of visiting all nodes is minimized. 

    Let us define ijx  as a binary variable equal to 1 if arc  ji, is in the optimal 

solution and 0 otherwise. For any salesman, iu  is the number of nodes visited on that 

salesman 's path from the origin up to node i  (i.e., the visit number of the 
thi  node). 

L is the maximum number of nodes a salesman may visit; thus, Lui 1  ; for all 

2i . In addition, let K  be the minimum number of nodes a salesman must visit, i.e., 

if 1ijx , then iuK   must be satisfied. The position variables iu make it possible 

to avoid the classical subtour elimination constraints. 

     In [24] the following integer linear programming formulation for the mTSP pro-

posed as follows: 
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  niLxxLu iii ,..,2      12 11   (5) 

  nixKxu iii ,..,2      22 11   (6) 

nixx ii ,..,2           111   (7) 

  nji2      12  LxLLxuu jiijji  (8) 

    Axij  ji,         ,1,0  
 

 

In this formulation, constraints (1) and (2) ensure that exactly m salesmen leave from 

and return to the depot. Constraints (3) and (4) are the degree constraints. The inequal-

ities given in (5) and (6) serve as upper and lower bound constraints on the number of 

nodes visited by each salesman, and initialize the value of to 1 if and only if is the first 

node on the tour for any salesman. Inequality (7) forbids a vehicle from visiting only a 

single node. The inequalities given in (8) ensure that 1 ij uu  if and only if 

.1ijx  

3 Constraint Programming 

Constraint programming is a powerful paradigm for solving combinatorial search prob-

lems that draws on a wide range of techniques from artificial intelligence, computer 

science and operation research. A fundamental challenge in constraint programming is 

to understand the computational complexity of problems involving constraints. There 

are three differences between CP models and MILP models: firstly, CP models mostly 

concentrate on the constraints and feasibility. Secondly, In CP models, constraints can 

be logic constraints. And thirdly, CP models, for eliminating infeasible configurations 
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and decreasing the search space utilize heuristics, such as consistency techniques, con-

straint propagation, and branch and prune. 

In general, CP models can be divided into two groups: first one is constraint satis-

faction problems, and second one is constraint optimization problems that used in pre-

sent research. An assignment of values from the variables domain which satisfies all 

the constraints is a solution to a constraint satisfaction problem. Otherwise, search pro-

cedures are used to find the best solution for constraint optimization problems. The 

readers are referred to [25-30] for reviewing of the solving techniques of the CP prob-

lems. 

The multiple traveling salesman problem (mTSP) is a NP-hard combinatorial opti-

mization problem. To address these computational challenges, we aim to test the effec-

tiveness of CP, which is well known for its abilities to express complex relationships 

using global constraints and to obtain good quality solutions within reasonable times. 

A CP implementation contains a search strategy and a constraint propagation mecha-

nism designed to filter out the values in (integer) variable domains that cause infeasible 

solutions[27, 31]. 

In the constraint model, algorithms are triggered every time a change occurs in the 

domain of a variable. A feasible solution is obtained when all domains are reduced to a 

single value.  A variable can be used to model more than one constraint so whenever a 

change occurs in the domain of a shared variable, propagation algorithms of all global 

constraints are run to search for the possible domain reductions of other variables [29, 

32, 33]. Search strategies may include both look back and look ahead procedures. As 

the search proceeds, filtering algorithms are re-run with the updated information to 

identify a feasible solution.  

Milano and Wallace [34] presented Constraint Programming as a natural formalism for 

modelling problems, and as a flexible platform for solving them. They combined linear pro-

gramming with propagation and novel and varied search techniques which can be easily 

expressed in CP.  

In the case of CP Optimizer, the optimality proofs are provided by the Failure-Di-

rected search[35] whereas good quality solutions are produced by the Large Neighbor-

hood Search [36], these 2 techniques are combined in the CP Optimizer automatic 

search. 

Failure-directed Search (FDS) assumes that there is no (better) solution or that such a 

solution is very hard to find. Therefore, instead of looking for solution(s), it focuses on 

a systematic exploration of the search space, first eliminating assignments that are most 

likely to fail. Self-Adapting Large Neighborhood Search approach [36] combines Large 

Neighborhood Search with a portfolio of neighborhoods and completion strategies to-

gether with Machine Learning techniques to converge on the most efficient neighbor-

hoods and completion strategies for the problem being solved. Large Neighborhood 

Search (LNS) and FDS form the basis of the automatic search for scheduling problems 

in CP Optimizer, part of IBM ILOG CPLEX Optimization Studio. 

Pesant et.al [37] presented a constraint logic programming model for the traveling 

salesman problem with time windows which yields an exact branch-and-bound optimi-

zation algorithm without any restrictive assumption on the time window. This algorithm 

unlike dynamic programming approaches does not rely on the degree of discretization 

applied to the data. The data-driven mechanism at its core more fully exploits pruning 
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rules developed in operations research by using them not only a priori but also dynam-

ically during the search. 

 Caseau et. al. [38] presented a set of techniques which include a propagation 

scheme to avoid intermediate cycles (a global constraint), a branching scheme and a 

redundant constraint that can be used as bounding method. Also, they show that these 

techniques can solve problems twice larger than those solved previously with 

constraint programming tools. 

Our CP model is denoted by using the Optimization Programming Language (OPL) 

and formulated using the IBM ILOG CP optimizer. The remainder of this part indicates 

how to make the CP model step-by-step. 

3.1 Variables 

In this section, we introduce a CP model for mTSP. In this CP model, two types of 

variables are needed. One is an interval variable. We utilize (time) interval variables 

that are capable of expressing several critical decisions such as start time, end time, 

duration and usage rate under one variable [39, 40]. Interval variables are useful in 

order to represent complex scheduling and routing activities especially when they are 

optional (i.e. a task may or may not be processed, a customer may or may not be visited, 

etc.). An important additional feature of interval variables is the fact that they can be 

optional, that is, one can decide not to consider them in the solution schedule Laborie 

and Rogerie [45] mention several advantages of interval variables. One is that the op-

tionality is already modeled in the definition of the interval variable and there is no 

need for additional constraints in order to enforce this binary relationship, as the tradi-

tional integer decision variables require in scheduling problem formulations. Also func-

tion presenceOf (a) is a boolean function which indicates (a) is absent or present [41]. 

In this study, a city can be selected by a set of salesmen, therefore optional interval 

variables are used to model this case. We define ijx  as an interval variable which rep-

resents the salesman j  to visit city i . The other type of variable needed to complete 

the model is the interval sequence variable. In our model, a sequence variable represents 

an assortment on the set of cities visited by a salesman. Since we have several salesmen, 

so we have several sequences. The size of the sequence depends on the number of cities 

visited by any salesman. We define jl  as an interval sequence variable which repre-

sents the 
thj  salesman.  

 

OPL gives us specific facilities to express decision variables in a more compact way. 

Dependent variables are implemented as OPL variable expressions (dexpr) defined 

through equality constraints. We use two dependent variables in our model, described 

just below: 
 

  mjxpresenceOfNR
n

i

ijj ,...,1 ,
2




 

iNR represents the total number of cities visited by a salesman. 
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3.2 Constraints 

    By considering the function of presenceOf(a), we define following constraint to 

ensure that a city is visited only by one salesman: 

  nixpresenceOf
m

j

ij ,...,2   ,1
1




 

 

The distance between two cities is calculated as: 
 

tuple triplet { int p1; int p2; int d; }; 

 {triplet} dist = {<p1,p2,ftoi(round(sqrt(((coord[1][p1])-
(coord[1][p2]))^2+(coord[2][p1]-coord[2][p2])^2)))> | p1,p2 in 
city }; 
 
 

CP has some predefined constraints which show the flexibility of the CP model. One 

of them is noOverlap which is used to guarantee that there is no overlap between any 

two cities. We use this on the interval sequence variables as: 

  mjdistlnoOverlap j ,...,2,1     ,,   

This constraint states that the sequence defines a chain of non-overlapping intervals 

(distances), where any intervals in the chain are constrained to end before the start of 

the next interval in the chain.  
 

We use UNRK i   to enforce the upper and lower bounds for the number of cities 

visited by one salesman. To ensure that all salesmen start from depot 0 and turn back 

to the depot 1(, add two constraints as: 

 
  mjxllast

mjxlfirst

jj

jj

,...,2,1          ,,

,...,2,1        ,,

1

0




 

 

3.3. Objective 

   The objective function, minimizing total cost (distance) of visiting all cities, formu-

lated as below: 

    
 


m

j i

ij

m

j

j xendOfxendOfMinimize
1 21

1 max     

Where  
jxendOf 1  represents the distance travelled by each salesman to the depot 

city 1. In other words, endOf is an integer expression used to access the end time of an 

interval. The objective function minimizes the sum of the end time of the routes. The 

CP code of the proposed method shown in figure 1 is as follows: 
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4 Computational Results 

This section presents the computational study and its results. At first, the heuristic al-

gorithms compared mTSP are described. Next, solving the standard issues of the mTSP 

from the TSPLIB library by two methods (MILP and CP) has been introduced in the 

subsections 4.2 and 4.3, respectively. 

using CP; 
int cities=76; 
range city=0..cities; 
int salesmen=5; 
range sale=1..salesmen; 
int U=20; 
int K=1; 
float coord[i in 1..2][j in city]=...; 
 
tuple triplet { int p1; int p2; int d; }; 
 {triplet} dist = {<p1,p2,ftoi(round(sqrt(((coord[1][p1])-
(coord[1][p2]))^2+(coord[2][p1]-coord[2][p2])^2)))> | p1,p2 in 
city } ; 
  
dvar interval task[t in city][l in sale] optional(t>1); 
dvar sequence lane[l in sale] in all (t in city) task [t][l]; 
dexpr int num[l in sale]=sum(t in city:t>1)(presen-
ceOf(task[t][l])); 
dexpr float y= sum(l in sale) endOf(task[1][l]); 
minimize y; 
subject to{ 
c1: 
forall (t in city: t>1) 
    sum(l in sale)presenceOf(task [t][l])==1; 
c2: 
forall (l in sale){ 
    noOverlap(lane[l], dist); 
    first(lane[l],task[0][l]);  
    last (lane[l],task[1][l]); } 
c3: 
forall (l in sale) 
  { 
  num[l]<=U; 
  num[l]>=K;   

  } 

Figure1. CP Code of the mTSP 
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4.1 Test Algorithms for Comparison  

  In this subsection, we introduced the heuristic algorithms compared with mTSP as 

follows.     

    M. Yousefikhoshbakht et al. [42] proposed a hybrid two-phase algorithm called 

SW+ eliteAS , for solving the MTSP which can be explained as the problem of designing 

collection of routes from one depot to a number of customers subject to side constraints. 

At the first stage, the MTSP is solved by the sweep algorithm, and at the second stage, 

the Elite Ant Colony Optimization ( eliteAS ) and 3-opt local search are used for im-

proving solutions.  

    LTang et al. [13] presented the model, solution method, and system developed 

and implemented for hot rolling production scheduling. This project is part of a large-

scale effort to upgrade production and operations management systems of major iron 

and steel companies in China. They propose a parallel strategy to model the scheduling 

problem and solve it using a new modified genetic algorithm (MGA).  

   P. Junjie and W. Dingwei[10] presented ant colony optimization(ACO) to solve mul-

tiple travelling salesman problem (MTSP). They showed that how the ant colony opti-

mization (ACO) can be applied to the MTSP with ability constraint.  

A. R. Hosseinabadi et al.[43] presented a new hybrid algorithm, called GELS-GA for 

solving the mTSP. The objective of presenting the proposed algorithm was to combine 

the public search capabilities of GA with local search of GELS algorithm and to create 

a stable algorithm, which can make reaching the global optimum largely possible. 

   F. Zhao et al. [19] introduced an improved genetic algorithm for the multiple traveling 

salesman problem. In this algorithm, a pheromone-based crossover operator is de-

signed, and a local search procedure is used to act as the mutation operator the phero-

mone-based crossover can utilize both the heuristic information including edge lengths 

and adjacency relations, and pheromone to construct offspring. 

4.2 MILP Results 

     The proposed model in section 2 was solved by using IBM-ILOG-CPLEX-

Optimization Studio software on a HP laptop with the processor Intel ® Core i7-

2630QM CPU @ 2GHz. Standard issues of the mTSP are also included in the imple-

mentation of the proposed model, which are derived from the TSPLIB library. If the 

variable 1ijx , it means the 
thj  city is placed immediately after the 

thi  city by the 

same salesman. The instance of the TSPLIB called burma14 is solved in the following. 

The variables ijx  that are equal to 1 and the corresponding salesman in the mTSP -14 

example  with 14 cities , 2 salesmen  and 91  iu  are as follows: 

 

 181376512431412 

121091111 





Salesman

Salesman

 
The value of the objective function (optimal solution) is obtained 32 within 1 second. 

Also, this model is applied and tested on several instances from TSP problems of 

TSPLIB including Pr76, Pr152, Pr226, Pr299, Pr439, Pr1002, mTSP-51, mTSP-100-II 
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and mTSP-150-II. For each instance, the number of customers, n, the number of sales-

man, m, and the max number of customers that a salesman can visit, L, is presented. 

The numerical results of the proposed method on these instances are presented in Tables 

1. 

 
Table 1. The Result of the proposed method in order to minimize the total travelled distance 

problem MILP Result 

Name n m L 

MILP  

objective Iterations Times 

Pr76 76 5 20 170700 1879075 00:10:01:22 

Pr152 152 5 40 201770 356626 00:10:10:05 

Pr226 226 5 50 1736500 84580 00:10:03:11 

Pr229 299 5 70 671510 56925 00:10:04:40 

Pr439 439 5 100 1999900 29446 00:10:11:03 

Pr1002 1002 5 220 -- -- -- 

mTSP-51 

51 3 51 454-opt 1131 00:00:06:40 

51 5 51 496-opt 34754 00:00:10:10 

51 10 51 643-opt 22990 00:00:04:32 

mTSP-100-II 

100 3 100 28419 1573953 00:20:05:12 

100 5 100 25135 6580111 00:20:15:08 

100 10 100 29048 5738885 00:20:03:21 

100 20 100 43537 3501321 00:20:10:00 

mTSP-150-II 

150 3 150 27964 538442 00:20:01:08 

150 5 150 29244 654921 00:20:00:49 

150 10 150 36795 547833 00:20:01:55 

150 20 150 53621-opt 412523 00:20:03:16 

150 30 150 77875-opt 357803 00:20:08:07 

 
 

4.3 Constraint Programming Results 

The mTSP-51 example of TSPLIB with 51 cities and 3 salesmen was solved by using 

IBM-ILOG-CP-Optimization Studio software on an aforesaid laptop and the best solu-

tion after 120 seconds is obtained 456.  The cities travelled with each salesman are 

presented in the Table 2. 
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Table 2. The Result of the MTSP-51 in order to minimize the total travelled distance 

Salesman 1 Salesman 2 

Visited cities Arrival time Leave time Visited cities Arrival time Leave time 

0 0 0 0 0 0 

2 12 12 27 8 8 

16 21 21 51 16 16 

50 27 27 46 18 18 

9 33 33 12 25 25 

30 41 41 47 31 31 

34 48 48 17 40 40 

21 57 57 37 45 45 

29 64 64 44 52 52 

20 74 74 15 58 58 

35 81 81 45 65 65 

36 87 87 33 72 72 

3 99 99 39 86 86 

28 108 108 10 96 96 

31 115 115 49 104 104 

8 124 124 5 112 112 

26 131 131 38 119 119 

7 142 142 11 126 126 

23 148 148 32 132 132 

43 161 161 1 138 138 

24 173 173    

14 184 184 Salesman 3 

25 190 190 Visited cities Arrival time Leave time 

13 203 203 0 0 0 

41 212 212 22 7 7 

40 224 224 1 14 14 

19 235 235    

42 244 244    

4 260 260    

18 268 268    

6 283 283    

48 292 292    

1 304 304    

 

The computational results of the proposed method on several instances from TSP 

problems of TSPLIB are presented in Tables 3 and 4. 
 

Table 3. The Result of the proposed method in order to minimize the total travelled distance 

Problem  CP Result 

Name n m L CP objective Time(s) 

Pr76 76 5 20 156388 00:02:00:52 

Pr152 152 5 40 155595 00:02:00:50 

Pr226 226 5 50 165804 00:02:00:58 

Pr299 299 5 70 82834 00:02:00:71 

Pr439 439 5 100 198990 00:02:01:05 

Pr1002 1002 5 220 241468 00:02:03:71 



12 

  Table 4. The Result of the proposed method in order to minimize the total travelled distance 

Problem mTSP-51 mTSP-100-I 

m 3 5 10 3 5 10 20 

CP 

 Objective 
456 485 608 23509 24714 32440 44611 

Time(s) 
00:02:0

0:11 

00:02:0

0:41 

00:02:0

0:52 

00:02:0

0:42 

00:02:0

0:46 

00:02:0

0:44 

00:02:0

0:53 

 

Problem mTSP-100-II mTSP-150-I 

m 3 5 10 20 3 5 10 

CP Objec-

tive 
23023 23910 31556 40652 29687 31045 37605 

Time(s) 
00:02:0

0:42 

00:02:0

0:33 

00:02:0

0:04 

00:02:0

0:51 

00:02:0

0:46 

00:02:0

0:49 

00:02:0

0:52 

 

Problem mTSP-150-I mTSP-150-II 

m 20 30 3 5 10 20 30 

CP Objec-

tive 
49917 63795 27327 29050 39675 56306 80018 

Time(s) 
00:02:0

0:66 

00:02:0

0:83 

00:02:0

0:47 

00:02:0

0:44 

00:02:0

0:49 

00:02:0

0:63 

00:02:0

0:82 

5 Comparison of Computational Results 

    The implementation results of the proposed model are compared to the other existing 

optimization algorithm in the literature and articles [10, 13, 19, 42, 43]. 

    A very important advantage of CP-mTSP compared to ILP model in Vansteenwegen 

et al. [44] and Labadie et al. [45] is that the number of constraints is no longer expo-

nentially growing with the size of the input such as number of customers, vehicles and 

tour duration. 

 

Table 5. Comparison of the MILP model and CP model with the result of papers [10, 13, 42, 43] 

Problem 

Name Pr76 Pr152 Pr226 Pr299 Pr439 Pr1002 

n 76 152 226 299 439 1002 

m 5 5 5 5 5 5 

L 20 40 50 70 100 220 

ACO[10] 
Avg. 180690 136341 170877 83845 165035 387205 

Time(s) 51 128 143 288 563 2620 

SW+ eliteAS
[42] 

Avg. 157562 128004 168156 82195 162657 381654 

Time(s) 19 41 62 65 95 186 

GELS-GA[43] 
Avg. 132784 105205 152135 76554 146523 354341 

Time(s) 5 8 9 11 16 27 

MGA 

[13] 

Avg. 160574 133337 178501 85796 183698 459179 

Time(s) 43 91 165 363 623 2892 

MILP Result 
Obj. func. 170700 201770 1736500 671510 1999900 -- 

Time(s) 601 610 603 604 611 -- 

CP 

 Result 

Obj. func. 156388 155595 165804 82834 198990 241468 

Time(s) 120 120 120 120 120 120 
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     According to Table 5, the MILP model lost its computational efficiency in large 

scale problem. In problems with 76 and 152 cities, MILP could not find optimal solu-

tion, as well as, in problems with 226, 299, 439 and 1002 cities, MILP could not find 

feasible solution in 600 seconds. The computational efficiency of the CP model is better 

than MILP model for Pr76, Pr152, Pr226, Pr299, Pr439, Pr1002. Also, the CP model is 

better than ACO and SW+ eliteAS
algorithms for Pr76, Pr152 and Pr226. In addition, 

the CP model is better than ACO for Pr299. 

 
Table 6. Comparison of the MILP model and CP model with the result of papers[19, 43] 

Prob-

lem 

Name mTSP-51 mTSP-100-II 

m 3 5 10 3 5 10 20 

En-

hance

d GA 

[19] 

Best 447.42 446.11 583.57 
22366.5

7 

23895.3

8 

27675.4

2 

39993.8

3 

Avg. 448.5 478.41 587.39 
22466.4

1 
24040.5

7 
28033.5

3 
40274.5

8 

Worst 449.62 482.41 589.86 
22611.2

4 

24095.9

6 

28216.6

4 

40582.5

5 

Time 

(s) 
7.10 8.78 11.20 17.27 20.18 26.52 34.89 

GELS

-GA 

[43] 

Best 252 259 324 17800 20532 24354 35142 

Avg. 254.5 263.5 328 18035 20589 24803.5 35969 

Worst 257 268 332 18270 20646 25253 36796 

Time(s

) 
5 4 9 12 14 17 23 

MILP 

Result 

Obj. 

func. 
454-opt 496 643-opt 28419 25135 29048 43537 

Time 

(s) 
6 10 4 1205 1215 1203 1210 

CP 

Result 

Obj. 

func. 
456 485 608 23023 23910 31556 40652 

Time 

(s) 
120 120 120 120 120 120 120 

 

 Name mTSP-150-II 

 

Prob-

lem 
m 3 5 10 20 30 

En-

hance

d GA 

[19] 

Best 
39179.4

1 

40437.1

8 

40437.1

8 

55959.7

0 

71605.2

5 

Avg. 
39361.0

4 

40663.3

1 

40663.3

1 

56417.8

6 

71808.9

9 

Worst 
39557.4

3 

40803.1

5 

40803.1

5 

56572.8

7 

71923.9

8 

Time 

(s) 
28.04 34.02 34.02 57.13 67.47 

GELS

-GA 

[43] 

Best 37600 38132 38132 51393 66474 

Avg. 37933.5 38336.5 38336.5 51443 66824.5 

Worst 38267 38541 38541 51493 67175 

Time 

(s) 
25 28 28 36 44 

  

MILP 

 

Obj. 

func. 
27964 29244 36795 

53621-

opt 

77875-

opt 

Time 1201 1200 1201 1203 1208 
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According to Table 6, the MILP is better than CP model only for mTSP-51 with 3 

salesmen and lost its computational efficiency in large scale with 100 and 150 cities. 

The CP model is better than Enhanced GA and GELS-GA algorithms for mTSP-150-

II with 3, 5 and 10 salesmen. 

6 Conclusion  

In this paper, we study the mTSP, formulate it as a constraint programming model and 

report solutions for benchmark instances of the TSPLIB. Constraint programming is a 

powerful paradigm for solving combinatorial search problems so we use the CP model 

for solving multiple Travelling Salesman Problem (mTSP). The mTSP is very time 

consuming due to its NP-hard nature. The new model, CP- mTSP, has been shown to 

be quite competitive with the heuristic algorithms and can be a reference method for 

solving variants of OP. The computational results indicate that CP- mTSP performs, on 

average, quite well compared to heuristic algorithms and outperforms most of the ex-

isting approaches in the literature in terms of the number of identified best-known so-

lutions. TSP problems of TSPLIB including Pr76, Pr152, Pr226, Pr299, Pr439, Pr1002, 

mTSP-51, mTSP-100-II and mTSP-150-II show that the efficiency of the CP model for 

solving problem in large scale problem. Also, these results show that the CP model is 

more efficient than other algorithms such as ACO, SW+ eliteAS , GELS-GA and En-

hanced GA in some instances of TSPLIB. Future work for consideration is related to 

the development of an efficient and effective decomposition algorithm.  

ILP provides a global perspective through reporting upper and lower bounds that 

guide the search effectively. Also, CP is well known for its ability to find good quality 

feasible solutions for complex structured problems within reasonable time. Therefore, 

a hybrid decomposition algorithm that exploits these benefits of ILP and CP may obtain 

new best-known solutions and/or prove the optimality of the current ones for the bench-

mark problem instances.  
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