
Priority Search with MiniZinc

Thibaut Feydy1, Adrian Goldwaser3, Andreas Schutt1,2, Peter J. Stuckey1,2,
and Kenneth D. Young2

1 Data61, CSIRO, Australia
2 University of Melbourne, Australia

3 University of New South Wales, Australia

Abstract. MiniZinc is a powerful modeling language for constraint pro-
gramming, which is capable of concisely specifying complex models. But
much of the power of constraint programming is not available to users of
MiniZinc since it only supports a very limited search language. Extending
the MiniZinc search language is important to allow much more complex
searches to be specified, but also challenging since extensions must be
implemented by solver writers. Indeed only a minority of systems that
support MiniZinc support its existing search language. In this paper we
add one new search constructor, priority search, to MiniZinc which
allows the specification of complex nested searches. Priority searches,
allow the use of a variable array to select which of an array of search
constructs should be processed next. We explain how this search con-
structor can be straightforwardly implemented in systems that support
MiniZinc’s existing search language. We show that the expressiveness
of priority search allows us to improve the solving of a number of
MiniZinc models.

1 Introduction

Constraint programming (CP) is a highly successful approach to discrete opti-
mization. The success is founded on two important features of CP:

– heterogeneous global constraints which allow the user to write a high level
model using the global constraint to capture important combinatorial sub-
structures, such that the conjunction can be solved, since the CP formalism
handles arbitrary heterogeneous collections of constraints.

– user defined search which allows the user to specify how to look for good
solutions, using their knowledge of the problem.

MiniZinc [8] has been very successful at allowing the user to make use of global
constraints, even when the constraints are not natively supported by the un-
derlying solver they use. Hence the advantages of the CP modeling approach
transfer to other solving technology such as MIP and SAT. But MiniZinc has
been less successful at providing extensive search facilities. The MiniZinc search
language is quite restrictive and even then it is not implemented by all CP
solvers that support MiniZinc. Extending the search language for MiniZinc is

thus a two-edged sword: each extension can improve the usability of the system
for CP solving, but each new feature has to be seen as beneficial enough that
the solver writer will actually implement it.

In this paper we argue that adding one new search combinator, priority
search, is worth the tradeoff. The priority search combinator allows us to dy-
namically choose the order of a number of searches, using the state of some solver
variables.

The most common kind of search strategy that is supported by priority search
is one where we want to select some object dynamically and then fix all the
decisions about that object.

Example 1. In a flexible job shop scheduling we must determine for each task
which machine it should run on, and when it should run, respecting the prece-
dences of tasks which make up a job. A good search strategy for this is to choose
a task with the smallest possible start time and then fix its start time and the
machine it runs on. Its not possible to represent such a strategy in the current
MiniZinc search, since effectively we need to use the start time to select the next
two variables to label. We can represent this using priority search however. ut

Similar example arise in packing problems, where we wish to fix all the place-
ment decisions about an object being packed at the same time, or in configuration
problems, where once we choose to include a large device in the configuration
we wish to fix all the decisions related to configuring that device.

Priority search allows a separation of the variables used to choose what to
search on from the actual variables which are searched on. This freedom allows
for much more interesting search strategies to be defined directly in MiniZinc
without adding significant new overhead to the solver writer. Other uses it can
be put to include: user-defined tie-breaking on variable selection, randomization
of search, and complex value-selection strategies.

2 Programmed Search in MiniZinc

Programmed search in MiniZinc is currently quite restricted. There are basic
search routines, exemplified by int search4

annotation int_search(array[int] of var int, ann, ann)

An int search declaration int search(x, varsel, valsplit) takes an array of
integer variables x, and a variable selection strategy varsel and a value split-
ting strategy valsplit. The strategy repeatedly chooses a variable from x using
the selection strategy varsel and then chooses a splitting constraint using the
valsplit and branches on the splitting constraint and its negation. During this
process variables in the array x which are fixed are omitted from consideration.

Variable selection strategy include such things as: input order in the order
of the array, first fail ordered by current domain size, smallest ordered

4 Currently int search has a fourth argument, a holdover from the Eclipse defini-
tions it is based on, which is deprecated so we will omit it in this paper.

by current domain minimum, and largest smallest ordered by largest of
the current domain minimum.

Value splitting methods include such things as: indomain min equate to
minimum value, indomain split constrain to lower half of values, and indomain random
equate to a random value in the domain.

Example 2. For example, consider a search annotation int search([x,y,z],
smallest, indomain min) with the current domains x = 0, y ∈ 5..9, z ∈
4..12. Then variable z is selected and the splitting constraint is z = 4. ut

Similar basic search strategies are available for arrays of bools, arrays of
floats and arrays of set of integers.

The other component of MiniZinc search is a single search combinator
annotation seq_search(array[int] of ann)

which takes an array of search annotations and applies them in order, exhausting
each search strategy, i.e. fixing all the variables mentioned in the search strategy,
before proceeding to the next in the list.

Example 3. For example, consider a search annotation

1 seq_search([bool_search([b1,b2,b3], input_order, indomain_random),
2 int_search([x1,x2,x3], smallest, indomain_min)])

which will choose a random value for the Booleans b1, b2, b3, before proceeding
to label the x variables in order of smallest value. ut

Since search annotations are part of the annotation type ann we can de-
fine parameters (variables) that take these values, and use any other MiniZinc
construct that is applicable to this type, in particular if-then-else-endif.
Since this computation is managed by MiniZinc itself it adds no overhead to the
solver.

Example 4. Given a 2D packing problem, we can calculate the density of packing
in the two directions l and w and choose to search first on the most dense
dimension. Consider a set of rectangles of lengths len and widths wid to be
packed in a box of length boxlen and width boxwid. The search annotation

1 if sum(len) div boxlen > sum(wid) div boxwid
2 then seq_search([int_search(l, smallest, indomain_min),
3 int_search(w, smallest, indomain_min)])
4 else seq_search([int_search(w, smallest, indomain_min),
5 int_search(l, smallest, indomain_min)]) endif

will encode this. Note that the solver will only receive one of the sequential
search annotations. ut

3 Priority Search

The priority search strategy uses an array of variables to select out of array of
search strategies, which to do next

annotation priority_search(array[int] of var int, ann, array[int] of ann)

An annotation of the form priority search(selvars, varsel, searches)
considers the array of variables selvars using the variable selection strategy
varsel to select a variable, or equivalently an index into the array selvars. The
index is then used to determine which of the array of search strategies searches
is executed next.

Example 5. Given a flexible job shop model with decisions

1 array[TASK] of var TIME: start; % start time of task
2 array[TASK] of var MACHINE: machine; % machine for task
3 array[TASK] of set of MACHINE: ms; % machines possible for task
4 array[MACHINE] of var int: load; % load on each machine

then a natural search strategy is to select the task with the earliest possible start
time and fix its start time and machine. Using priority search we express this as

1 priority_search(start, smallest,
2 [int_search([start[t],machine[t]], input_order, indomain_min)
3 | t in TASK])

We can use priority search to also implement complex value selection search
strategies since we can map these to variable selection strategies.

Example 6. A more involved search for the flexible job shop scheduling problem
using nesting priority searches is

1 priority_search(start, smallest,
2 [seq_search([int_search([start[t]], input_order, indomain_min),
3 priority_search([load[m] | m in ms[t]], smallest,
4 [bool_search([machine[t] = m | m in ms[t]],
5 input_order, indomain_max)
6 | m in ms[t]])
7])
8])

Here we pick the task with the smallest start time, and then choose from its
possible machines the machine with the least current load, and assign it to that
machine. Note how we make use of priority search here to implement a value
selection heuristic. ut

Note that is critical that the selection strategy itself does not ignore fixed
variables, it may often be the case that variables in selvars are already fixed.
Instead the criteria for ignoring a variable/index for selection is that all the
variables in the corresponding search strategy are already fixed.

Example 7. Consider a routing problem encoded using decision variables

1 array[NODE] of var NODEx: next; % next NODE after this one or dummy
2 array[NODE] of var TIME: visit; % visit time for this NODE
3 constraint forall(n in NODE)
4 (visit[next[n]] = visit[NODE] + travel_time[n,next[n]]);

We wish to search by deciding the next places to visit. But we would like to
choose that node based on earliest possible visit time. The search strategy is

1 priority_search(visit, smallest,
2 [int_search([next[n]],input_order,indomain_random)
3 | n in NODE])

Note that by the time we pick a node its visit time will be fixed by the constraints
defining visit time. ut

Another usage of priority search is when we wish to search on Boolean vari-
ables. Since the traditional measures on variables, e.g. domain size, are not very
meaningful for Booleans its not really possible to select the best Boolean out of
an array to branch on. Using priority search we can make this decision based on
a related integer expression.

Example 8. Consider the Feedback Arc Set [5] problem of totally ordering the
nodes in a directed graph in order such that the least number of edges point
from a larger numbered node to a smaller numbered node. A MiniZinc model
for the problem is

1 int: n;
2 set of int: NODE = 1..n;
3 int: m;
4 set of int: EDGE = 1..m;
5 array[int] of NODE: from; % directed edge from node from[e]
6 array[int] of NODE: to; % to node to[e]
7 array[NODE] of var NODE: order; % total order of nodes
8 array[EDGE] of var bool: reversed; % which edges have reversed order
9 constraint forall(e in EDGE)(reversed[e] = (order[from[e]] >= order[to[e]]));

10 include "alldifferent.mzn";
11 constraint alldifferent(order);
12 solve minimize sum(reversed);

A basic search strategy for this is analogous to scheduling, and labels the order
variables from first to last int_search(order,smallest,indomain_min). This is often
a very bad order, assuming the graph is sparse, since all that needs to be de-
cided is the reversed variables, which will guarantee that a total order exists.
Using existing search facilities we can do little more than bool_search(reversed,

input_order,indomain_min) since we cant really attach usefully choose from a list
of Boolean variables. Using priority search we can define some auxiliary integer
expressions to help choose.

1 priority_search([from[e] - to[e] | e in EDGE], largest_smallest,
2 [bool_search([reversed[e]],input_order,indomain_min)
3 | e in E])

The above definition selects the edge with largest of the smallest possible value
of the difference between the from and to nodes, and sets it to be not reversed.
This will select the edge which is closest to being satisfied without being reversed
and set it as not reversed, thus trying to drive quickly to a good solution. ut

Priority search allows us to build tie breaks into decisions about which vari-
able to label.

Example 9. In a carpet cutting problem [11] we may wish to pick the carpet
that can be placed closest to the beginning of the roll. But initially all carpets
can be placed there, hence is essential to tie break, which we can do using area
of carpet. Given data and variable declarations

1 array[CARPET] of int: area;
2 array[CARPET] of var XPOS: x;
3 array[CARPET] of var YPOS: y;

a priority search which chooses the carpet that goes closest to the beginning of
the roll, tie breaking on carpet area is expressed as

1 let { int: maxarea = max(area)+1; } in
2 priority_search([maxarea*x[c] - area[c] | c in CARPET], smallest,
3 [int_search([x[c],y[c]], input_order, indomain_min)
4 | c in CARPET])

by encoding the lexicographic order in some auxiliary variables. ut

A less obvious use of priority search is to select between different searches
for the whole problem. Given n possible search strategies for a given problem
we can calculate some features of the problem in order to rank them and then
choose the choice which is ranked highest. If the ranking is static, then this can
be managed with the existing MiniZinc features using if-then-else-endif,
but if the ranking is dependent on solver internals we need priority search.

Example 10. Consider a complex optimization problem with 4 competing search
strategies search1, . . . , search4 that each will fix all the decisions of the
problem. We can randomly select which strategy to use.

1 priority_search([0|i in 1..4],random_order,[search1, search2, search3, search4])

While at face value this seems uninteresting, just selecting a search strategy once
on commencement, if we combine this with restarts, since the priority search is
rerun from scratch on each restart, we do get to make use of each of the search
strategies. ut

3.1 Implementing Priority Search

Implementing the priority search combinator is fairly straightforward. The solver
already implements the dynamic variable selection strategies used in priority
search, so this can be reused from the existing code base. One caveat is that
the strategies need to be modified to select fixed variables, and ignore exhausted
searches.

The chief change, depending on how the seq search combinator is im-
plemented, is that now search strategies can no longer be seen as simply a
list of basic searches (a flattening of seq search annotations). Instead the
solver must represent the annotation structure, although it may already do so if
seq searchs were not flattened. The remainder of the implementation is fairly
standard, when running a priority search combinator the solver must be able to
notice when a search is exhausted, so as to finish it and try to select the next
search to perform. Since search exhaustion is already required for the sequential
combinator this is not burdensome.

We argue that the addition of priority search is thus minimally bur-
densome on solver implementers. Indeed, the implementation required 75 lines
of code to added to Chuffed (as well as 166 lines required to change the parser
which was previously specialized to return a flat list of base searches).

Table 1. Comparing searches using existing MiniZinc search language, versus those
enabled by priority search.

Benchmark Original Search Priority Search
#opt #best Obj Fails Time #opt #best Obj Fails Time

fjsp (5) 2 0 3828 250k 180s 2 3 1802 1206k 180s
carpet (20) 3 3 2042 1511k 257s 4 13 1984 977k 244s
fas (38) 30 1 18.3 478k 77s 30 4 18.1 337k 88s

4 Experiments

To illustrate the benefit we show how the programmed search for a number of
benchmarks used in the MiniZinc challenge, which use the existing MiniZinc
search facilities, can be improved using priority search. We use fjsp (flexible
job shop scheduling: Challenge 2013) and carpet (carpet cutting: Challenge
2011). For fjsp we pick the task with the smallest start time and then it picks
the machine with the current smallest load (as in Example 6). For carpet we
first set the rotation of all carpets (as in the original search) and then choose the
carpet with leftmost position tie-breaking on size of carpet, and fix its position
(as in Example 9). We also compare the effectiveness on the Feedback Arc Set
(fas) problem of Example 8 trying the fixed Boolean search, versus the priority
Boolean search. For each benchmark we show the aggregated results over a
number of instances (shown in parentheses) of the problem in Table 1. We ran
the CP solver Chuffed [2] extended with priority search for at most five minutes
per instance and recorded the number of optimal solutions (#opt), the number
of instances the search found a better solution within five minutes (#best), the
mean value of the objective, the mean number of failure/conflicts (Fails), and
the mean runtime (Time).

Unsurprisingly from a CP perspective, if we increase the expressiveness of
the search language we should be able to find better programmed searches. By
driving towards better solutions earlier priority search tends to improve the
number of instances that can be proved optimal, and improve the best solution
found within a time limit.

5 Related Work

Unsurprisingly any search that can be specified with a priority search annotation
can be directly programmed in the implementation language of the underlying
solver. Specialized searches for particular problems, which are expressible as
priority searches have been used in CP from its very beginnings (see e.g. [1]).
Constraint logic programming [4] allowed the specification of such searches, as
did early search languages like SALSA [6]. The priority search annotation makes
these searches possible for a modeler with no idea about the underlying solver
or its implementation language.

The search language for OPL [12] is highly expressive, allowing complex vari-
able and value selection strategies as well as event handling, and search limits.

The priority search combinator implements the ordered by construct of OPL
which allows a selection of an object ordered by a the value of a complex ex-
pression which can include run time solver information through functions like
dsize (domain size), dmin (domain min), and regretdmin (minimal regret
value). Implementing such a complex search language requires tight communi-
cation with the solver, and OPL’s search is tied to a single solver.

Search in ObjectiveCP [7] is similar in expressiveness to OPL but makes use
of closures of Objective-C to allow searches to be expressed in Objective-C using
a library of higher order procedures. The search language can express priority
search. ObjectiveCP, like MiniZinc, allows the specification of search strategies
independent of the underlying solver, using a reversible mapping from model
variables to solver variables to obtain runtime information from the solver. The
interface between ObjectiveCP model and solver is thus much richer, and bidi-
rectional, whereas MiniZinc sends the search strategy to the underlying solver.

The lack of expressiveness of MiniZinc search has been noted before, and a
number of approaches to defined to extend it.

Search combinators [10] are a high level approach to extending search using
combinators. It separates the search concerns of: labeling, i.e. what decision to
make at each search node; queuing, i.e. which nodes should be selected to expand;
and search heuristic which decides which nodes by which labeling, which nodes
are processed again, and which are cut from the search. The labeling strategies
are assumed to be base search combinators that exist in the solver, and in that
sense search combinators are mainly orthogonal to this work, which adds a new
kind of base search capability. While search combinators do overlap with priority
search in their ability to change labeling strategies dependent on current solver
properties, it is not possible to define priority search using the search combinators
of [10], since variable selection is restricted to base searches. Hence the extensions
are orthogonal.

MiniSearch [9] is an approach to extend MiniZinc search without changing
the interface to solvers. It is a drastically cut down version of search combinators,
which does not rely on the solving implementing anything except the existing
FlatZinc interface. MiniSearch allows the specification of meta-search approaches
such as lexicographic branch and bound, large neighborhood search, or diverse
solution search, by only interacting with the solver when it finds solutions. The
MiniSearch approach to extending search is orthogonal to the priority search
extension, which allows a different search tree to be specified to the solver, by
changing the way in which it chooses to make decisions. The two approaches are
completely compatible.

6 Conclusion

The priority search combinator is a straightforward, yet powerful, addition to
MiniZinc’s search language. It is simple to implement, but significantly extends
the kinds of search that can be specified in MiniZinc. Hence we hope it is at-
tractive for solver writers to implement.

The priority search combinator was originally developed for and used in two
applications [3,13] whose papers will appear at CP2017, including the paper [3]
recieving the best student paper award. Without priority search these applica-
tions are not nearly as efficient as without it. This gives more evidence of the
utility of this modest addition to MiniZinc search.

References

1. Aggoun, A., Beldiceanu, N.: Extending CHIP in order to solve complex scheduling
and placement problems. Journal of Mathematical and Computer Modelling 17(7),
57–93 (1993)

2. Chu, G.: Improving Combinatorial Optimization. Ph.D. thesis, Department of
Computing and Information Systems, University of Melbourne (2011)

3. Goldwaser, A., Schutt, A.: Optimal torpedo scheduling. In: Beck, C. (ed.) Proceed-
ings of the 23rd International Conference on Principles and Practice of Constraint
Programming. p. to appear. LNCS, Springer (2017)

4. Jaffar, J., Maher, M.J.: Constraint logic programming: A survey. J. Log. Program.
19/20, 503–581 (1994)

5. Karp, R.M.: Reducibility among combinatorial problems. In: Miller, R.E.,
Thatcher, J.W., Bohlinger, J.D. (eds.) Complexity of Computer Computations:
Proceedings of a symposium on the Complexity of Computer Computations. pp.
85–103. Springer US, Boston, MA (1972)

6. Laburthe, F., Caseau, Y.: SALSA: A language for search algorithms. Constraints
7(3-4), 255–288 (2002)

7. Michel, L., Van Hentenryck, P.: A microkernel architecture for constraint program-
ming. Constraints 22(2), 107–151 (Apr 2017)

8. Nethercote, N., Stuckey, P., Becket, R., Brand, S., Duck, G., Tack, G.: Minizinc:
Towards a standard CP modelling language. In: Bessiere, C. (ed.) Proceedings of
the 13th International Conference on Principles and Practice of Constraint Pro-
gramming. LNCS, vol. 4741, pp. 529–543. Springer-Verlag (2007)

9. Rendl, A., Guns, T., Stuckey, P.J., Tack, G.: MiniSearch: a solver-independent
meta-search language for MiniZinc. In: Pesant, G. (ed.) Proceedings of the 21st
International Conference on Principles and Practice of Constraint Programming.
pp. 376–392. No. 9255 in LNCS, Springer (2015)

10. Schrijvers, T., Tack, G., Wuille, P., Samulowitz, H., Stuckey, P.: Search combina-
tors. Constraints 18(2), 269–305 (2013)

11. Schutt, A., Stuckey, P., Verden, A.: Optimal carpet cutting. In: Lee, J. (ed.) Pro-
ceedings of the 17th International Conference on Principles and Practice of Con-
straint Programming. LNCS, vol. 6876, pp. 69–84. Springer (2011)

12. Van Hentenryck, P., Perron, L., Puget, J.F.: Search and strategies in OPL. ACM
TOCL 1(2), 285–315 (2000)

13. Young, K.D., Feydy, T., Schutt, A.: Constraint programming applied to the multi-
skill project scheduling problem. In: Beck, C. (ed.) Proceedings of the 23rd Inter-
national Conference on Principles and Practice of Constraint Programming. p. to
appear. LNCS, Springer (2017)

