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Abstract. A critical need in teaching discrete optimization is to give
feedback to learners regarding what is wrong about the “solutions” they
provide. MiniZinc provides a solver independent modelling language for
expressing discrete optimization problems. In this paper we develop a
methodology for using MiniZinc to easily create solution checkers that
give meaningful feedback to learners. The checkers can be used inde-
pendently of the technology the learners use to actually solve the prob-
lem. The checkers can be included (perhaps in an obfuscated state) in a
MiniZinc project file, to allow standalone projects that learners can com-
plete locally through the MiniZinc IDE with meaningful feedback. The
checkers can also used as an online service enabling learners to submit
solutions for checking and feedback via the MiniZinc IDE or a Python
script. We have made use of this checking methodology for automatic
feedback and grading of over 65,000 student submissions running in the
Coursera Massive Open Online Courseware platform. Automated solu-
tion checking provides a pathway to self-directed learning for discrete
optimization which we believe is vital to ensure that the technology is
used widely.

1 Introduction

Building a correct model for a complex discrete optimization problem is a chal-
lenging task. As the complexity and size of discrete optimization problems that
we have to solve grows, so does the need to equip the next generation of opti-
mization professionals with the skills and tools to tackle these complex problems.

In terms of tools, high level modelling languages such as IBM OPL [13],
MiniZinc [10] or Essence [6], as well as modelling/solver hybrids like Objective-
CP [14] or SCIP [1] have been developed that lower the barrier to entry into
discrete optimization. Independent of the modelling method used, to support
learning how to build effective optimization solutions we still need to make these
tools easier to use and crucially easier to debug.

Debugging an optimization model is a challenging task. There are three fre-
quent issues that arise when modelling a problem:

– No answer returned by the solver which runs “forever”
– The solver returns that the problem is unsatisfiable when, in fact, it is not
– The solver returns an incorrect answer



The first issue is the most difficult to handle and usually relies on looking
at small instances, or examining runtime traces to understand propagation and
search behaviour. There is considerable work in runtime visualization, tracing,
and logging in order to tackle this challenge (see e.g. [4,11]).

The second issue is also challenging. Essentially we need to help explain why
there are no solutions. This can be helped by having known correct solutions,
and also by returning minimal unsatisfiable subsets to narrow down the incorrect
part of the model (see e.g. [7]). Essentially the user needs to track down which
constraints are eliminating correct solutions. Efficient ways to track down which
constraints of a complex model are problematic is an interesting topic of research
(see e.g. [9]).

The third issue perhaps appears to be the easiest to deal with since we have
a witness of the incorrect behaviour, but even then for complex optimization
problems, it may not be clear why a purported “solution” is not actually a
solution. This is the problem we focus on in this paper:

A learner (a user who is studying combinatorial optimization) is working
on a task set by an instructor, where the goal is to model and solve a certain
combinatorial optimization problem. The learner generates candidate solutions
to the problem, and we want to check whether those candidates are in fact
solutions, and provide meaningful feedback to the learner if they are not.

Note that the problem we address is distinct from the checking of solutions
returned by LP and MIP solvers (see e.g. [2,5]), which may be wrong because of
floating point computation. Rather than just checking or repairing a “solution”,
we wish to explain why it is not a solution in a way that helps learners understand
their mistakes, and therefore, learn from them.

We introduce a methodology for creating solution checkers, using MiniZinc
infrastructure, so that we can build automatic tools for

– Giving detailed feedback about erroneous candidate solutions
– Grading an optimization project candidate solution

We describe how we can make use of and extend existing MiniZinc tools to
provide self contained modelling projects with built-in checkers and feedback,
and how we can use this as an online resource for checking candidate solutions
of projects.

2 Building Solution Checkers

In this section we develop a MiniZinc-based methodology for building solution
checkers which give meaningful feedback to learners when they check an erro-
neous candidate solution.

It is important to emphasise that this checking system does not impose any
restrictions on the modelling or solving technology used by the learner. In this
work we will use MiniZinc for building example solutions, but this is not required
for the use of the solution checkers considered here, although some things will
be easier if we are checking MiniZinc models.



2.1 Solution Checking by Correct Model

The simplest way to use a MiniZinc model as a solution checker is to encode
values of the candidate solution’s decision variables in a data file (.dzn) format.
The resulting data file can then be read in with a correct model of the original
problem definition.

Example 1. Consider a simple graph coloring problem, given n nodes, and a list
of m edges, color each node with at most k colors such that no two adjacent
nodes are colored the same. The aim is to minimize the number of colors used.
A correct MiniZinc model color.mzn for this problem is

1 int: n;
2 set of int: NODE = 1..n;
3 int: m;
4 set of int: EDGE = 1..m;
5 array[EDGE] of NODE: from;
6 array[EDGE] of NODE: to;
7 int: k;
8 set of int: COLOR = 1..k;
9 array[NODE] of var COLOR: x; % color of each node

10 var NODE: nc; % number of colors used
11 constraint forall(e in EDGE)(x[from[e]] != x[to[e]]);
12 constraint nc = max(x);
13 solve minimize nc;

For this example, we will consider a small data file small.dzn representing the
graph shown on the right:

1 n = 5;
2 m = 6;
3 k = 4;
4 from = [1,1,2,3,3,4];
5 to = [2,4,3,4,5,5];

1 2 3

4 5

We can check a candidate solution x = [1,2,3,3,2]; nc = 3; (written in
.dzn format) to the model by just adding it to the data used in solving (here
using the inline data file flag -D)

minizinc color.mzn small.dzn -D"x = [1,2,3,3,2]; nc = 3;"

The solver will return =====UNSATISFIABLE===== indicating that the candi-
date solution is not correct. We may get a line number that indicates where the
model is unsatisfiable, as detected by the MiniZinc system (before it reaches the
solver). In this case, the MiniZinc system points at line 11, when e = 4, declaring
an inconsistency in the != operator expression. ut

Note that simply taking an existing model as a solution checker is not always
correct. In particular a model may include symmetry or dominance breaking
constraints (e.g. [8,3]) which are not required of a solution, and are simply there
to improve solving behaviour. If a learner’s model does not include the same
constraints, their correct candidate solutions may be rejected, as shown in the
following example.

Example 2. A better model for the graph coloring problem includes a constraint
to remove value symmetries, which in MiniZinc could be expressed as



1 include "value_precede_chain.mzn";
2 constraint value_precede_chain([i | i in COLOR],x);

But if we use this model for checking, the system will incorrectly return
=====UNSATISFIABLE==== for correct candidate solutions such as
x = [2,1,2,1,3]; nc = 3;. ut

So we must be careful when using an existing model as a checker, making
sure that it only encodes the constraints of the problem, and nothing further.

2.2 Collecting Solutions to be Checked

In order to use solution checking we require that the learner’s model outputs
solutions in the correct format. Since we want to use MiniZinc for checking,
candidate solutions need to be represented as a MiniZinc data file. If the learner
is not required to use MiniZinc, then there needs to be clear instructions for the
format of the output, so that it matches the definitions of decision variables in
the MiniZinc model that is used for solution checking.

If the project is in MiniZinc we can make use of MiniZinc infrastructure
to produce standardized output automatically. Frequently when constructing a
project for students, the instructor will create a starting point for the model file
which includes the declarations required to read the data. In order to ensure
that output from the model is of the correct format, they can simply add the
decision variables required for solution checking to this starting model, with an
annotation check output.

Example 3. A starting model file mycolor.mzn for the graph coloring problem
of Example 1 could be,

1 int: n; % data declarations: n no of nodes
2 set of int: NODE = 1..n; % NODE set of nodes
3 int: m; % m: no of edges
4 set of int: EDGE = 1..m; % EDGE: set of edges
5 array[EDGE] of NODE: from; % source of edge
6 array[EDGE] of NODE: to; % dest of edge
7 int: k; % k: no of colors
8 set of int: COLOR = 1..k; % COLOR: set of colors
9

10 array[NODE] of var COLOR: x :: check_output; % color of each node
11 var NODE: nc; :: check_output; % number of colors used

As long as the learner does not modify the decision variable declarations, the
output from this model will always have the correct form for checking. ut

We can run MiniZinc with the --output-mode dzn to override any output
item in the user’s model, and output those variables annotated as check output
in a correct MiniZinc data format. For example

minizinc --output-mode dzn mycolor.mzn small.dzn

will output solutions of mycolor.mzn in the correct format for checking.
In any optimization problem we will almost always want to check that the

objective value computed by the learner’s model is consistent with its definition



in the problem statement. We have observed that incorrect objective evaluation
is a good early warning signal that the learner has significant misconceptions
about the problem specification. We can use MiniZinc to extract the objective
explicitly, since if the model includes an optimization objective this will be cap-
tured in a default variable objective. We can use this for evaluating the
candidate solutions without having to specify a name for a specific decision vari-
able. We can ensure that the default variable appears in the output by adding
the --output-objective option to MiniZinc.

Example 4. We could remove the line declaring nc from the mycolor.mzn file
and build a checking model using objective. When running the learner’s
model for checking we run

minizinc --output-mode dzn --output-objective mycolor.mzn small.dzn

which prints out the candidate solutions in the correct format. ut

Note that requiring MiniZinc to be run in a particular way in order to create
the right output for checking may seem difficult for the student, but we can hide
all of this from the learner if they are using a checking-aware framework, such
as the MiniZinc IDE or a grading submission script.

2.3 Better Error Messages

Giving feedback to learning modellers is vital for them to improve their modelling
skills, and we can generate much better feedback to explain why a candidate
solution is incorrect than the simple checking described above. So we advocate
that building a checking model that can give easily interpretable error messages
is essential for improving the learning experience.

We now demonstrate how we can build a checking MiniZinc model to explain
errors in a candidate solution for a given discrete optimization problem. The as-
sumption is that the candidate solution is available in MiniZinc data format. We
will build a checking model that will consider the solution as fixed parameters,
and use the assertion checking facilities of MiniZinc to output suitable error
messages.

The first thing we must gracefully handle is errors in the format.

Example 5. Consider the erroneous solution x = [1,2,4]; nc = 4; for the
coloring problem and small.dzn. Running,

minizinc color.mzn small.dzn -D"x = [1,2,4]; nc = 4;"

gives an error message about an “index set mismatch in variable declaration for
x”, since the array should have five elements instead of the given three. Similarly,
running

minizinc color.mzn small.dzn -D"x = [2,1,2,1,3]; nc = 9;"



gives an error message about a model inconsistency in the second to last line
of the model (because nc is not equal to the maximum of the x array), which
is difficult to communicate to the learner without exposing the entire model
color.mzn. ut

In order to create better error messages than the default messages from
MiniZinc we must be able to read in their values from the candidate solution
without causing a MiniZinc error, which may be hard to decipher. To do so we
relax restrictions on the type of values they can take.

Example 6. We allow x to take any array of integer values, and nc to take
any integer value. Thus the declarations for x and nc in the checking model
checkc.mzn are

1 〈 data declarations 〉
2 array[int] of int: x;
3 int: nc;

We can then explicitly check that the index set of x and its contents are correct.
And we can check that nc is given an appropriate value.

1 constraint assert(index_set(x) = NODE,
2 "x array must be indexed from 1..\(n)\n");
3 constraint forall(i in index_set(x))
4 (assert(x[i] in COLOR,
5 "x[\(i)] is not a correct COLOR (1..\(k))\n"));
6 constraint assert(nc in COLOR,"nc does not take a value in 1..\(k)\n");

Running

minizinc checkc.mzn small.dzn -D"x = [1,2,4]; nc = 4;"

we now get an explicit error message “x array must be indexed from 1..5.”

minizinc checkc.mzn small.dzn -D"x = [2,1,2,1,3]; nc = 9;"

gives an explicit error message “nc does not take a value in 1..4.” ut

Since checking that the “solution” fits the basic type definition is the first
thing we need to do for almost any solution checkers it is worth building a
library of tests for doing so. We introduce a MiniZinc function check which
plays the same role as assert, but rather than aborting returns a Boolean value.
We introduce a library function check int(x, S, n) which checks that integer
x ∈ S and if not outputs an error message, where n is the string name of variable
x. Similarly check array(x, l, S, n) checks that a fixed array of integers is of
length l and that each element of the array x has a value in S, and otherwise
outputs an error message using n as the name of the x variable.

1 test check(bool: b, string: s) =
2 if b then true else trace("ERROR: " ++ s, false) endif;
3

4 test check_int(int: x, set of int: vals, string: name) =
5 check(x in vals, "integer " ++ name ++ " is not in values \(vals)\n");
6

7 test check_array(array[int] of int: x, int: length,
8 set of int: vals, string: name) =
9 check(length(x) = length, name ++ " is not of length \(length)\n") /\



10 forall(i in index_set(x))
11 (check(x[i] in vals, name ++ "[\(i)] = \(x[i]) " ++
12 "is not in values \(vals)\n"));

Example 7. Using the library, we can rewrite checkc.mzn as

1 constraint check_int(nc, COLOR, "nc");
2 constraint check_array(x, n, COLOR, "x");

Note that the checking model does not very gracefully handle candidate so-
lutions that are not correct MiniZinc data format since it never actually gets to
run without correct input. For example

minizinc checkc.mzn small.dzn -D"x = [2,1,2,1,3; nc = 9;"

gives a syntax error at the first semicolon in the inlined data due to the missing
bracket. Similarly if a parameter is omitted, e.g.

minizinc checkc.mzn small.dzn -D"x = [2,1,2,1,3];"

gives a symbol error saying nc is not defined and should be given in a data file.
In these cases we must rely on the syntax error messages from MiniZinc. Still
these format errors are easy to understand and fix for a learner.

Once we have determined that the solution fits its type declarations, next we
must determine that the constraints are satisfied. We can rewrite the constraints
as assertions with an attached error message, in a format very similar to the
correct model.

Example 8. For the coloring problem we can write assertions to check the con-
straints as follows:

1 constraint forall(e in EDGE)
2 (check(x[from[e]] != x[to[e]],
3 "The nodes \(from[e]) and \(to[e]) (endpoints of edge \(e))" ++
4 " have the same color \(x[from[e]])\n");
5 constraint forall(i in NODE)
6 (check(nc >= x[i],
7 "nc = \(nc) is less than color \(x[i]) of node \(i)\n"));
8 constraint check(nc <= max(x),"nc = \(nc) is greater than max(\(x))\n");

Then for example running

minizinc checkc.mzn small.dzn -D"x = [1,2,3,3,2]; nc = 3;"

we get an error message “The nodes 3 and 4 (endpoints of edge 4) have the same
color 3.” And for example running

minizinc checkc.mzn small.dzn -D"x = [2,1,2,1,3]; nc = 2;"

we get an error message “nc = 2 is less than color 3 of node 5.” Note how we can
have a better error message by “decomposing” the max constraint rather than
just stating that nc is not the max of x. ut



2.4 Hidden Variable Consistency

For many models, the decision variables which describe the solution may not be
the variables that are natural to describe the constraints. There may be other
internal variables which are functionally defined by the decision variables, and
which are likely to be used in the model for building constraints and/or are much
more natural for describing the correctness of a candidate solution.

Example 9. Consider the problem of lining up n people numbered from 1 to n
for a photo in a single line. We want to make sure that there are no more than
2 people of the same gender (male, female or other) in sequence in the line.
We want to minimize the total distance between the pairs of people who are
numbered consecutively. The decisions are an array pos which for each person
gives their position in the line. A correct model for this is

1 int: n; % data declarations: n number of people
2 set of int: PERSON = 1..n; % PERSON set of people
3 enum GENDER = { M, F, O }; % GENDER set of genders
4 array[PERSON] of GENDER: g; % the gender of each person
5 set of int: POSN = 1..n; % POSN set of positions
6

7 array[PERSON] of var POSN: pos; % decisions: a position for each person
8

9 array[POSN] of var PERSON: who; % view: a person for each position
10 include "inverse.mzn";
11 constraint inverse(pos,who); % channel from decisions to view
12 constraint forall(i in 1..n-2)
13 (g[who[i]] != g[who[i+1]] \/ g[who[i+1]] != g[who[i+2]]);
14 solve minimize sum(i in 1..n-1)(abs(pos[i] - pos[i+1]));

Note that a critical part of learning how to model this problem is to realise that
it is worth having the inverse view of the variables who in order to easily specify
that no more than two people of the same gender can be adjacent. Hence the
output specification should not include these variables, otherwise the students
are effectively given the key to the solution. ut

The use of hidden variables makes checking harder in two ways. First we
may need to invoke a solver to generate the values of these hidden variables.
Second, given an incorrect candidate solution, there may be no possible value
for these hidden variables, hence we have to guard the checking to ensure we do
not assume that there is some value for the hidden variables.

Example 10. Consider a data file p9.dzn for the photo problem of Example 9

1 n = 9;
2 g = [M,M,M,M,F,F,F,M,M];

and the erroneous candidate solution pos = [1,2,3,4,5,6,7,2,9]; _objective = 25;.
If we simply assert inverse(pos,who) then this constraint will fail since there
is no inverse of this position array, because persons 2 and 8 are both at position
2. Hence the checker must guard the inverse constraint, and only when that
succeeds use the computed values of the who variables for checking the solution.
In order to ensure we have fixed values of the who variables (which are now
computed by a solver), we must postpone the checking of them until the output



item of the model, and indeed for simplicity we will move all checking to the
output statement.

A checking model for the photo problem checkp.mzn is as follows:

1 〈 data declarations 〉
2 array[int] of int: pos;
3 int: _objective;
4 array[POSN] of var int: who;
5 include "inverse.mzn";
6 include "alldifferent.mzn";
7 constraint if forall(i in index_set(pos)(pos[i] in POSN) /\
8 alldifferent(pos) then inverse(pos,who)
9 else forall(i in 1..n)(who[i] = 1) endif;

10 solve satisfy;
11

12 output [if check_array(pos, n, POSN, "pos") /\
13 check_alldifferent(pos,"pos") /\
14 check_array(fix(who), n, PERSON, "who") /\
15 forall(i in 1..n-2)
16 (check(g[fix(who[i])] != g[fix(who[i+1])] \/
17 g[fix(who[i+1])] != g[fix(who[i+2])],
18 "three people of the same gender \(g[fix(who[i])])"
19 ++ " in positions \(i)..\(i+2)\n")) /\
20 let { int: obj = sum(i in 1..n-1)(abs(pos[i] - pos[i+1])); } in
21 check(obj = _objective, "calculated objective \(obj) " ++
22 "does not agree with computed value \(_objective)\n")
23 then "CORRECT: All constraints hold"
24 else "INCORRECT" endif];

The hidden variables who are declared with a relaxed type. We assert the inverse
constraint only if all the pos variables have the right kind of value and are
alldifferent, otherwise we simply give default values to the who variables. All the
checking is moved to the output statement. Here we rely on the lazy (shortcut)
evaluation of conjunction, so that if the check alldifferent call fails then
the checking of the gender constraint is not executed. Note how we use the fix
function, which allows us to coerce the variable type who results into their fixed
value. This succeeds since within the output statement we can guarantee that
all variables have been assigned a fixed value from the solver.

Running

minizinc checkp.mzn p9.dzn \
-D"pos = [1,2,3,4,5,6,7,8,9]; objective = 8;"

gives the error message “three people of the same gender M in positions 1..3.”
ut

The above example makes use of the check alldifferent test not defined
in the code. We can build a library of checkers for global constraints analogous
to the global constraint definitions, for reuse in any checking model.

Example 11. The check for alldifferent is defined below. Note that it tries to give
the most detailed description of the error as possible.

1 test check_alldifferent(array[int] of int: x, string: name) =
2 forall(i, j in index_set(x) where i < j)
3 (check(x[i] != x[j], name ++ "[\(i)] = \(x[i]) = " ++
4 name ++ "[\(j)] when they should be different\n"));

For example running



minizinc checkp.mzn p9.dzn \
-D"pos = [1,2,3,4,5,6,7,2,9]; objective = 25;"

gives the response “pos[2] = 2 = pos[8] when they should be different.” ut

Another important part of solution checking is illustrated in the example
above. We certainly have to check that the objective value determined by the
learner is actually correct given their solution to the decisions. So we recalcu-
late the value and check it with their computed objective value (in this case
gathered automatically from the model using objective). In earlier projects
we accepted as a solution just the decision variables from the user, and simply
calculated the objective value locally, to be used for grading, but often calcu-
lating the correct objective is a crucial part of building the model. Also when
grading solutions we need to be able to explain to a student why they received
the grade they did dependent on objective value, hence they need to expose their
view of what the objective is to explain the grading. For optimization problems
we therefore always collect the user’s computed objective value as part of the
candidate solution.

Because we need to check hidden variables whose values will only be available
in the output statement, we move all the checks to the output statement. This
has the ancillary benefit that we can now also determine in a single place if
any checks have failed, as shown in the example above. This will become more
important when we wish to also grade a solution.

2.5 Summary

In summary we can create an effective and informative solution checker for a
discrete optimization problem by following the steps below:

– Build a MiniZinc model that takes the decision variables and objective value
as fixed arguments.

– Weaken the type/domain of the decision variables (and objective) to the
broadest possible type/domain, in order that we do not get a default MiniZ-
inc error about assigning a wrong value to a type.

– Add variable declarations for hidden variables required to effectively express
some constraint of the model

– Constrain the hidden variables, in such a way that regardless of the input
decision variables there is always a solution to the hidden variables

– Build an output statement which contains the following checks:
1. Explicit checks that the type/domain of decisions (and objective) are

correct with respect to the specification.
2. Explicit checks for constraints on the decision variables, which point out

the exact point where the constraint is violated as much as possible.
3. Explicit checks for constraints expressed on the hidden variables (using

fix) so they can be treated as fixed.
4. Recalculate the true objective value from the decisions, and explicitly

check that this agrees with the input objective value.
– Output “correct” if all the checks succeed or “incorrect” otherwise.



3 Using Solution Checkers

In this section we discuss various ways we can make use of solution checkers to
enhance the learning of discrete optimization modelling. Again while we concen-
trate on MiniZinc, only Section 3.1 and Section 3.4 below rely on the learner
using MiniZinc for their project.

3.1 Self Contained Modelling Projects

The MiniZinc IDE supports the concept of a project, which is simply a set
of related model and data files. It is easy to extend this to include checking
models as well. We have built an extension of the IDE that reserves the filename
extension .mzc for MiniZinc checking model files.

To build a self-contained modelling project we simply bundle a description of
the problem (including a description of the input format as well as the required
output format for the solution) together with some data files, and perhaps a
starting model file (this is particularly useful for beginners to avoid confusion
from trivial errors). Indeed we can include in the model files declarations for the
data and the output decision variables if we desire.

To include a solution checker we simply bundle a checking model project.mzc
in the project, where project.mzn is the name of the model the learners need to
build.

We have extended the IDE such that the existence of the checking model
project.mzc makes available a new button labelled “CHECK” in the IDE when-
ever we are visiting the file project.mzn. Hitting the “CHECK” button as op-
posed to the “RUN” button will run the model with the --output-mode dzn
and --output-objective flags, and pass each output candidate solution to
the checking model in order to generate feedback output, which is appended to
the output of the learner’s project model.

The idea of self contained projects can still be used if learners are not required
to use MiniZinc, but can solve a discrete optimization problem using an arbitrary
approach. The instructor will then need to create scripts to take the learner’s
output and run it through the MiniZinc check model appropriatedly, and of
course the learner will need to have MiniZinc installed.

Note that it is important to process every candidate solution found by the
model, since there can be bugs in models which are hidden by the search strategy.
It may well be that the first candidate solution found by a model is always valid,
but later ones are not, or that the optimal candidate solution found happens to
satisfy the model while earlier ones do not.

A checking model will in many cases be quite similar to a model for solving
the problem, as shown in the next example.

Example 12. Consider a modelling project for n queens. A starting model file
queens.mzn could be

1 int: n; % number of queens
2 set of int: ROW = 1..n;



3 set of int: COL = 1..n;
4 array[ROW] of var COL: q :: check_output; % col of queen in each row
5 output [ if fix(q[r]) == c then "Q" else "." endif ++
6 if c == n the "\n" else "" endif
7 | r in ROW, c in COL ];
8

which gives the data declarations (just n here) as well as the decision variable
declarations and a pretty printing output item.

A possible checking file is

1 int: n; % number of queens
2 set of int: ROW = 1..n;
3 set of int: COL = 1..n;
4 array[int] of int: q; % col of queen in each row
5 solve satisfy;
6 include "check.mzn";
7 output [ if check_array(q,n,COL,"q") /\
8 forall(r1, r2 in ROW where r1 < r2)
9 (check(q[r1] != q[r2],

10 "queens in rows \(r1) and \(r2) are on same column\n")
11 /\
12 check(q[r1]+r1 != q[r2]+r2,
13 "queens in rows \(r1) and \(r2) are on same up diagonal\n")
14 /\
15 check(q[r1]-r1 != q[r2]-r2,
16 "queens in rows \(r1) and \(r2) are on same down diagonal\n")
17 )
18 then "CORRECT: All constraints hold"
19 else "INCORRECT" endif ];
20

Note how it is easy to map the checking model to a solution model, though it
would not be the preferred solution model (which uses three alldifferent con-
straints). ut

Given this similarity, the question is in which form the checking model should
be distributed to learners. The possible options are to

– Store the checking model as plain text, thus not hiding it from the learner.
This is perfectly valid for projects designed for self-directed learning, which
do not take part in assessment.

– Obfuscate the checking model in a simple way (e.g. rot13, or using a binary
representation of the internal MiniZinc syntax tree). Again this is valid for
projects designed for self-directed learning, and adds a barrier such that only
a learner who “really wants to” read the checking model will be able to do
so.

– Encrypt the checking model. This may be appropriate for assessed projects,
but note that it cannot really be made secure, since the decryption keys must
be available to MiniZinc (and hence either hidden inside it, or obfuscated in
the rest of the project). Thus there is no real guarantee that a determined
attacker could not decrypt the checking model, the bar has just become
higher.

– Finally, we may keep the checking models separate from the project, which
we discuss in the next section.



3.2 Online Checking of Discrete Optimization Projects

The provision of standalone projects with built-in checking models is valuable
but suffers from two disadvantages.

– Inclusion of a checking model into a project even if it is encrypted is inher-
ently insecure, since MiniZinc must have the ability to decrypt the checking
model in order to run it, and hence a determined attacker may well be able to
extract the decrypted checking model. Checking models may well give impor-
tant direction for building effective solving models, although not always, so
the possibility of their availability to learners being assessed is detrimental.

– Assessors of discrete optimization projects may well wish to have a certi-
fication that the model reached an acceptable level of performance, over a
set of benchmarks, and this is harder to ensure/guarantee if all checking is
performed on the learner’s local machine.

For these reasons it is attractive to have checking done remotely in a secure,
consistent, and controlled environment.

We can easily set up an online service for checking models, by providing a
web service, and a number of data files. We have extended the MiniZinc project
files to allow the inclusion of coursera file which defines data required to
specify how an online checking service used for Coursera assignments is to be
run. We have extended the IDE to make use of this to allow students to use the
online checking by adding a Coursera submission button to the IDE, when they
view a project with a coursera file.

The same mechanism could easily be generalized. We plan to allow the ad-
dition of an online file to MiniZinc projects that specifies, similar to the
currently used coursera files an address of an online service and how and
what to check. The online site can then be set up with the checking model to-
gether with a collection of data files. The MiniZinc IDE can be extended so that
a learner who is building a model for a project that has online checking sees
a “SUBMIT” button when visiting the model file, analogous to the Coursera
submission button.

Running the model with the “SUBMIT” button will cause the last candidate
solution to be sent to the online checking server, together with details of which
data file is used. The online service can then be run with the candidate solution
and the appropriate data file, and the feedback returned to the submitter.

The same facility could be used for projects that are not specified in MiniZinc,
by using a generic python submission program grader.py which reads the
online file to determine how to submit. The learner simply needs to create

the output in appropriate MiniZinc data format in order to be checked.

3.3 Automatic Grading of Discrete Optimization Projects

It is simple to extend the checking infrastructure to also grade projects, as long as
the grades only rely on correctness of solutions and the objective value obtained.
We only need to modify the output for correct solutions to output the grade.



To add grading we typically need to add marking scheme data, either to each
data file, or a uniform one (if all the objective values are the same). The marking
scheme data can be part of the regular data files distributed to the students (in
the case of self-directed learning), or it can be given in the form of additional
data files that are only stored on the online server.

A straightforward way to do this is to have a list of objective values, and
marks attached with reaching that value. For a minimization problem it can be
written as follows:

1 array[int] of int: objvalue;
2 array[int] of int: marks;
3 ...
4 then let { int: i = min(j in index_set(objvalue)
5 where objvalue[j] >= _objective)(j);
6 int: mark = marks[i]; } in
7 "CORRECT: All constraints hold: MARK=\(mark)\n"
8 else "INCORRECT: MARK=0\n" endif ];

We compute the index i of the minimum objective value which the computed
solution betters, and return the corresponding mark. Note that we should have a
final objective value greater than all possible objectives so that the computation
of i cannot fail.4

Example 13. Consider adding a grader for the photo problem of Example 9. We
decide that a correct solution is worth 2 out of 5, and an optimal 5, give 3 for
an objective values that is within 5 of optimal. The data file from Example 10
can be extended with

1 objvalue = [11, 16, 56];
2 marks = [5, 3, 2 ];

A student submitting the solution pos = [5, 8, 9, 6, 7, 4, 1, 2, 3];
objective = 15; will get the feedback “CORRECT: All constraints hold:

MARK=3.” ut

3.4 Hidden Data

Finally, grading models where all data is made available to the learners may
result in the learners fine-tuning their models to work on the given data, and
potentially nothing else. Hence it is much more robust to also test a learner’s
model on hidden data. It is straightforward to use a solution checker on data
that is not provided to the user, but in this case the learner submits the model
to an online server, rather than candidate solutions. The model is then first run
with the hidden data (and some time limits), and then has its solutions checked,
with the report from the solution checker sent to the learner.

We have used automatic grading for the all Coursera assignments we have
developed, with some strict time limits on the time available for computing so-
lutions. It is worthwhile to note that because MiniZinc is an open-source toolset
that does not require a license, it is fairly easy to assemble a MiniZinc-based

4 Alternatively we can add more complicated grade calculation code that accounts for
this possibility.



solution-checker in a containerized environment (e.g. docker, kubernetes). A key
advantage of containerization is that it combines with cloud computing environ-
ments (e.g. Amazon Web Services, Google App Engine) to provide on-demand
autoscaling, which is critically valuable just before an assignment deadline when
each learner will often submit an assignment for grading 20-100 times over a few
days. This kind of scalable infrastructure was essential in our deployment that
has graded over 65,000 submissions.

4 Experience Report and Conclusion

The methology of using MiniZinc for checking solutions was first developed for
the Lightning Model and Solve competition held at CP2013 in Uppsala. The
approach was then used to build the automatic graders for the Coursera course
“Modeling Discrete Optimization”, which launched in 2015. It has now been used
to check over 65,000 submissions, and provide automatic feedback and grading.

Initially the problem of hidden variables was solved using a two-model check-
ing process, where the first model detected whether the hidden variables could be
given a value, and computed and printed their values. The second model checked
the remaining constraints that required the value of hidden variables. The sin-
gle model approach using output was developed more recently and used for the
automatic graders for the Coursera courses “Basic Modeling for Discrete Opti-
mization” and “Advanced Modeling for Discrete Optimization”, which launched
in 2017. It has been used for the checking of over 24,000 submissions.

We make use of the --output-mode and --output-objective features
of MiniZinc which were added in order to support checking of solutions in the
MiniZinc Challenge [12]. For the MiniZinc Challenge we are only interested in
correctness of the submitted solvers, so there checking simply uses the correct
model approach of Section 2.1, and indeed the model is given, so feedback about
it is irrelevant.

Once we release the MiniZinc IDE version which directly supports checking
files, we plan to upgrade all the workshops on the Coursera courses (which do
not count for assessment) to include a solution checker in the project. We hope
to see an immediate benefit for students undertaking the workshop problems.

Building solution checkers that give meaningful feedback is important for
improving how we learn to create discrete optimization solutions. We are excited
about the ability to distribute stand-alone projects with automatic checking
included, since this makes self-directed learning far easier to support. We plan
to use this facilities to add badges to our Coursera courses to encourage good
students to tackle more complex or esoteric modelling questions.

There is more work we can do to improve the use of automatic solution
checking. The tasks we are working on include:

– Releasing the current checking framework within the IDE.
– Publishing a check library of checkers for global constraints.
– Extending the checking framework to support an online file, with docu-

mentation about how to build the required online checking service.



– Building an online service at minizinc.org where instructors can register
checking models and data files.

– Extending the online service to submit and check models, although this relies
on us finding some computing resources to run the models.

– Improving feedback for unsatisfiable results.
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