
Ten Years of

Peter J. Stuckey

Overview

History of MiniZinc
How did it come into being

Major changes

The Current State of MiniZinc

Features that have been developed

The Future of MiniZinc

Conclusion

Ignasi Abio, Roberto Amidini, Maria Garcia de la
Banda, Ralph Becket, Gustav Bjordal, Sebastian
Brand, Geoffrey Chu, Michael Codish, Jip Dekker,
Nick Downing, Thibaut Feydy, Pierre Flener,
Graeme Gange, Tias Guns, David Hemmi, Kevin
Leo, Kim Marriott, Chris Mears, Nick Nethercote,
Justin Pearson, Andrea Rendl, Andreas Schutt,
Joseph Scott, Guido Tack, Mark Wallace

“Alone we can do so little; together
we can do so much.” – Helen Keller

History of MiniZinc

Genesis of MiniZinc

CP2006 Nantes:

Workshop: Next 10 years of CP

some speakers went WAY overtime

one large question resonated

We need a standard for writing CP models

Genesis of MiniZinc

The G12 Project

commenced in 2004

Zinc: a high level modelling language

Cadmium: a model transformation language

Mercury: a solver compilation language

around since 1995, used to build solver

Monolithic system

Genesis of MiniZinc

MiniZinc is a simplification of Zinc

stripping out complex things

constrained types, functions, records, tuples, enums

Key difference

MiniZinc interprets models to FlatZinc

Zinc compiles models to Mercury

MiniZinc Key Features

Separation of model and data

Expressive enough type system

int, float, bool, set of int, arrays

Predicates

crucial to handling global constraints

Maps to FlatZinc

minimal interface to a solver: vars + constraints + objective

Key Aims of MiniZinc

Easy for solver writers to support

specialized globals library

FlatZinc parser

many used the Gecode FlatZinc parser to start

Easy for modellers to use

Open source

Hidden History

MiniZinc paper REJECTED by CPAIOR2007

Admittedly we didn't have a full implementation

MiniZinc + FlatZinc definition

Cadmium translation from MiniZinc to FlatZinc

No experiments in the paper

But the key problem
MiniZinc: A Standard Language for Modelling CP Problems

MiniZinc Arrives

Paper published in CP2007
MiniZinc: Towards a standard CP modelling language

MiniZinc was supported by
G12fd

Eclipse

Gecode (Guido built an interface in 1 week!)

We also had a Minion backend!

Versions of MiniZinc
2007: v0.6 and CP paper

2008: v0.7, 0.8, first MiniZinc challenge

2009: v1.0, BSD license

2010: v1.1, rewritten, more efficient mzn2fzn, v1.2, CP-viz, tutorial

2011: v1.3, 1.4, improved output

2012: v1.5, 1.6

2013: v2.0 beta: minizinc.org

2014: v2.0

2015: MiniZinc IDE, MiniZinc bundle

2016: v2.1 MiniZinc and MiniZinc IDE

http://minizinc.org

Significant Advances

Relational Semantics

User Defined Functions

Option Types

Enumerated Types

Relational Semantics

What are the solutions of model A
var 0..1: y; constraint 1/y = 2 \/ y < 1

What are the solutions of model B
var 0..1: y; constraint not(1/y = 1)

Three possibilities
Strict: A: {}, B: {}

Kleene: A: {y = 0}, B: {}

Relational: A: {y = 0}, B: {y= 0}

MiniZinc implements the relational semantics
most modelling languages implement none!

User Defined Functions

Were in Zinc, but not MiniZinc

Needed
for better common subexpression elimination

driven by machine learning examples

Introduced need for local constraints (not in Zinc)

Advantages (beyond better CSE)
simplify the built ins of MiniZinc

improved functional global handling (1/3 globals are functional)

better translation to solvers (in particular for MIP)

Option Types

Representing decisions that are only sometimes relevant
like optional interval variables in CP optimizer

Mainly added to support
iteration over variable sets, variable where conditions

Syntax
var set of 1..12: x;
constraint y = sum(i in x)(a[i]);

Actual meaning
var set of 1..12: x;
constraint y = sum(i in 1..12)
 (if i in x then a[i] else <> endif);

Option Types

A new value <> meaning optional
in a constraint it is ignored

e.g. alldifferent([<>, 1,4, <>])

acts as an identity in an expression where possible

e.g. <> + 4 = 4

acts as annihilator otherwise

e.g <> - 4 = <>

Translated away by default

Eases modelling, but more work required on globals

Enumerated Types

Back from Zinc!

Implemented as type erasure
simply a type artifice for integers

Aim to catch type errors in models
array[POS] of var PERSON: order;
enum PERSON = {ann, bob, cal, dan, edna, fred};
constraint order[fred] > order[home];

Enumerated types
are ordered as in the definition: ann < bob

coerce to integers when used as integers: dan + 1 = 5

Current State of MiniZinc

Statistics

441 citations of the paper

66 from last year, and growing

40,000 downloads of MiniZinc package

around 50 a day

50% linux, 25% windows, 25% mac

Massive Online Open Courses

Modeling for Discrete Optimisation

8 week Coursera course on Minizinc

launched late 2015, closed mid 2017

8000 students

Massive Online Open Courses

Two 4 week courses with Jimmy Lee

Basic Modeling for Discrete Optimization

Advanced Modeling for Discrete Optimization

launched Jan 2017

Chinese and English

8000+ students

MiniZinc Challenge

Since 2008 (10th running this year)

Collected over 150 benchmark problems

many real world interesting problems

This year

16 solver (variations) submitted

8 internal submissions

5 categories:

Fixed, free, parallel, open, local_search

 Results on Wednesday

G

o

l

d

M

e

d

a

l

⇤The MiniZinc Challenge
is an annual event at CP and
organised by Data61, CSIRO.

Awarded To

HCSP
in the MiniZinc Challenge

⇤
2016:

Free Search Category

At CP 2016, September 5 — September 9

Toulouse — France

Peter J. Stuckey / Competition organiser

CP 2016

Gold Medal

Long List of Features Coming Soon!

Symmetry Detection (2009)

Dominance Detection (2015)

Half reification (2011)

Globals Detection (2013)

Stochastic MiniZinc (2014)

Multi-pass compilation (2015)

MiniSearch (2015)

Strings (2016)

Auto tabling (2017)

Symmetry Detection (2009)

Generate symmetries of small instances
find which symmetries generalize across instances

Generate candidate model symmetries
ask the user or use theorem proving

Add symmetry breaking (dynamic/static) to model

Extension to dominance
separate out objective and/or some constraints

generate symmetries

convert to dominance constraints

Constraints

Therefore, these four symmetries form a generating set forG. The generating set is minimal
since any proper subset is not a generating set for G.

2.3 Detecting symmetries of a CSP via graph automorphism

A hyper-graph is a pair (V ,E)where V is a set of vertices andE is a set of hyper-edges, each
of which is a non-empty subset of V . An automorphism (or symmetry) f of a hyper-graph
(V ,E) is a permutation of V that preserves E, i.e. a permutation such that ∀{vi, . . . , vj } ∈
E : {f (vi), . . . , f (vj)} ∈ E.

Several methods have been defined for automatically finding the symmetries of a CSP
P by representing it as a (hyper-)graph G in such a way that each automorphism of G
corresponds to a solution symmetry of P (see, for example, [5, 21, 27, 29]). The main
difference among these methods is in how the elements of P are mapped to the vertices and
hyper-edges of G.

In this paper we will use the full assignments graph representation defined in [21].
Briefly, the full assignments graph is built from a given CSP P = (X,D,C) by (a) repre-
senting every literal in lit(P) as a vertex; (b) representing every constraint c ∈ C by a set
of hyper-edges: either a hyper-edge for every assignment that does not satisfy c or a hyper-
edge for every assignment that satisfies c; and (c) adding an edge between every two literals
that assign different values to the same variable. The choice of whether to use satisfying
or unsatisfying assignments can be made independently for each constraint (often choosing
the one that would result in the least amount of edges).

Example 4 The full assignments graph for the CSP given in Example 1 to represent the
Latin square problem of size 3 is shown in the left hand side of Fig. 3. The 9 × 3 = 27 lit-
erals in the instance xij = k, where i, j, k ∈ 1..3, are represented by the 27 vertices in the
graph, each labelled xijk , where the x has been omitted in the graph for clarity. The graph
also has (18×3) edges representing the 3 assignments that do not satisfy each of the 18 con-
straints, plus (9× 3) edges connecting the 3 different values of each of the 9 variables. The

C

C

C

F F

F

A

B

D D

C

C

C

C

C

C

F

F
F

F

F
F

B1

B

A A1

E

E1

E

1
1,2,

2
1,3,

2
1,2,

2
1,1,

1
2,2,

1
2,1,

1
1,1,

1
1,2,

2
1,1,

1
2,2,

1
2,1,

1
3,1,

1
3,2,

1
1,1,

1
1,3,

2
1,3,

2
1,2,

3
1,2,

3
1,3,

1
2,3,

2
2,3,

3
2,3,

1
3,3,

1
2,3,

1
4,4,

1
1,4,

1
3,1,

1
3,2,

1
4,1,

1
4,2,

1
1,3,

1
4,3,

2
3,4,

2
1,4,

2
4,4,

4
3,4,

4
2,4,

3
4,4,

3
3,4,

3
2,4,

4
4,4,

3
1,2,

3
1,3,

3
1,4,

1
3,4,

1
2,4,

1
2,4,

1
3,3,

2
3,3,

3
3,3,

3
1,1,

4
1,1,

4
1,2,

4
1,3,

4
1,4,

3
1,1,

Fig. 3 Full assignments graphs and generating sets for LatinSquare[3] and LatinSquare[4]. Note that parts
of the graph are omitted for legibility

Half Reification (2011)

constraint x >= 0 \/ (y < 0 /\ z = x + 1)

becomes by reification
var bool: b1 = (x >= 0);

var bool: b2 = (y < 0);

var bool: b3 = (z = x+1);

var bool: b4 = (b2 /\ b3);

constraint b1 \/ b4;

Better translation

b1 -> (x >= 0);

b2 -> (y < 0);

b2 -> (z = x+1);

b1 \/ b2;

Half Reification (2011)

Benefits
all globals can be half reified:

separate failure from propagation

less propagation (faster)

simplifies implementation of relational semantics

Some solvers internally perform half-reification
CPX

LCG-glucose

Globals Detection (2013)

Find global constraints which are implied by the model
Use structure of model to find sub-problems

Generate candidate global constraints

Rank the global candidates by

coverage by solutions, size of global

Present the globals to the user in ranked order

Was available as a web tool: minizinc.org/globalizer

Highly important approach for naive modellers

gives a way to “lookup” the globals you need for your problems

User Interface
minizinc.org/globalizer

http://minizinc.org/globalizer

Stochastic MiniZinc (2014)

Extend MiniZinc to express stochastic problems
:: stage(n) annotation for pars and vars

:: expected value objectives

scenarios and scenario weights

Three approaches: transformation + solving hybrid
deterministic equivalence (transformation only)

policy-based search

progressive hedging

Was available: minizinc.org/stochastic/

new approach by Guido Tack and David Hemmi to be integrated

Multi Pass Compilation (2015)

MiniZinc flattens to FlatZinc
many decisions made during flattening, e.g

var {2,4}: x; var {2,4}: y; var {2,4,5}: z;
constraint all_different([x,y,z]);
constraint x+y+z=12 -> y=max([x,y,z]);

becomes
var {2,4}: x; var {2,4}: y; var {2,4,5}: z;
constraint all_different([x,y,z]);
var 2..5: i0 = max([x,y,z])
var bool: b0 = (y = i0)
var bool: b1 = (x+y+z != 12)
constraint or(b0,b1);

MiniSearch (2015)
Meta-search language for MiniZinc

Principles

no new interaction with solver

post constraints, get next solution, stack of scopes

A procedural language for solver control

an interpreter in C++

natively interacts with MiniZinc variables

manages solutions

Expresses searches such as

lexicographic B&B, large neighbourhood search, and/or search, interactive optimization

Available at minizinc.org/minisearch/

Multi Pass Compilation (2015)

More information = better decisions
var {2,4}: x; var {2,4}: y; var {2,4,5}: z;
constraint all_different([x,y,z]);
var 2..5: i0 = max([x,y,z])
var bool: b0 = (y = i0)
var bool: b1 = (x+y+z != 12)
constraint or(b0,b1);

finally
var {2,4}: x; var {2,4}: y; var {5}: z;
constraint x != y;
constraint x+y != 7;

——

——————— 5
————— false

—————
true5

Multi Pass Compilation (2015)

Multi pass compilation

Gecode first pass: Other solver second pass

reduces model size: around 5%

reduces run time for MIP solvers: around 50%

can improve compile time, no worse than double

(Bounded) Strings (2016)

We have extended MiniZinc with

var list of $T: a sequence of type T

$T could be int, or an enumerated type enum DNA = { A, C, G, T };

string constraints
(lex)order, concatenation, reverse, length, regular, gcc

coercion: array[int] of var int coerces to var list of int

Default: translated to integer constraints

But: Gecode+S (native definition)

(Bounded) Strings (2016)

Strings in MiniZinc provide

a standard way of writing string problems

a new challenge for CP solver implementors

see our paper on Friday

Auto Tabling (2017)

Annotate a predicate as: :: presolve(autotable);

Solution are computed

predicate replaced by a table constraint

Variations

call-based, and instance independent

Benefits

improved solving time

automatic reformulation of poor models

Not done in Australia

predicate rank_apart(var 1..52: a, var 1..52: b)
 = abs((a - b) mod 13) in {1,12};

predicate rank_apart(var 1..52: a, var 1..52: b)
 = table([a,b],[| 1,2 | 1, 13 | … | 52, 51 |]);

Other Stuff

linearization library

MIP solvers now usable through MiniZinc

C++ interface for MiniZinc

JSON input/output for MiniZinc

MiningZinc:

a special version for itemset mining

Future of MiniZinc

Upcoming Stuff

New library

changes to FlatZinc

Automatic checking/grading

see talk later in this workshop

New Coursera course: Solving Technologies

New Library

Naming convention changing

alldifferent (MiniZinc level)

fzn_alldifferent (FlatZinc level)

solver implementors adjust this definition

Enables better presolving

Allows more reuse

New Library

New graphs globals included
bounded_path, connected, dag, path,
reachable, steiner, tree, wst (weighted
spanning tree)

directed and undirected versions

Some others: cost_mdd

Auto Checking Grading

Infrastructure used for
Coursera

Build a standalone project
with detailed feedback

Checking in IDE

Checking as web service

More details later in
MODREF

Coursera Course: Solving

Looking at solving technologies

Constraint programming

Mixed integer programming

Local search

Using MiniZinc

Fable based learning

The Further Future

Better Search Annotations

complete search + LNS

local search

Nested Constraint Programming

extending Stochastic MiniZinc

??????

Conclusion

MiniZinc is a successful modelling language
ease of use, ease of learning

ease of solver support

expressiveness (except search expressiveness)

A suite of standard benchmarks for CP

Still lacking
ease of integration in applications

resources to integrate/maintain features

Questions

What do you want from MiniZinc?

What can you do for MiniZinc?

